19 resultados para Hormone-receptor

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Inherited GH insensitivity (GHI) is usually caused by mutations in the GH receptor (GHR). Patients present with short stature associated with high GH and low IGF-I levels and may have midfacial hypoplasia ( typical Laron syndrome facial features). We previously described four mildly affected GHI patients with an intronic mutation in the GHR gene (A.(1) -> G.(1) substitution in intron 6), resulting in the activation of a pseudoexon (6 Psi) and inclusion of 36 amino acids. Objective: The study aimed to analyze the clinical and genetic characteristics of additional GHI patients with the pseudoexon (6 Psi) mutation. Design/Patients: Auxological, biochemical, genetic, and haplotype data from seven patients with severe short stature and biochemical evidence of GHI were assessed. Main Outcome Measures: We assessed genotype-phenotype relationship. Results: One patient belongs to the same extended family, previously reported. She has normal facial features, and her IGF-I levels are in the low-normal range for age. The six unrelated patients, four of whom have typical Laron syndrome facial features, have heights ranging from -3.3 to -6.0 SD and IGF-I levels that vary from normal to undetectable. We hypothesize that the marked difference in biochemical and clinical phenotypes might be caused by variations in the splicing efficiency of the pseudoexon. Conclusions: Activation of the pseudoexon in the GHR gene can lead to a variety of GHI phenotypes. Therefore, screening for the presence of this mutation should be performed in all GHI patients without mutations in the coding exons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crosstalk between nuclear receptors is important for conversion of external and internal stimuli to a physiologically meaningful response by cells. Previous studies from this laboratory have demonstrated crosstalk between the estrogen (ER) and thyroid hormone receptors (TR) on two estrogen responsive physiological promoters, the preproenkephalin and oxytocin receptor gene promoter. Since ERa and ERb are isoforms possessing overlapping and distinct transactivation properties, we hypothesized that the interaction of ERa and b with the various TR isoforms would not be equivalent. To explore this hypothesis, the consensus estrogen response element (ERE)derived from the Xenopus vitellogenin gene is used to investigate the differences in interaction between ERa and b isoforms and the different TR isoforms in fibroblast cells. Both the ER isoforms transactivate from the consensus ERE, though ERa transactivates to a greater extent than ERb. Although neither of the TRb isoforms have an effect on ERa transactivation from the consensus ERE, the liganded TRa1 inhibits the ERa transactivation from the consensus ERE. In contrast, the liganded TRa1 facilitates ERb-mediated transactivation. The crosstalk between the TRb isoforms with the ERa isoform, on the consensus ERE, is different from that with the ERb isoform. The use of a TRa1 mutant, which is unable to bind DNA, abolishes the ability of the TRa1 isoform to interact with either of the ER isoforms. These differences in nuclear receptor crosstalk reveal an important functional difference between isoforms, which provides a novel mechanism for neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors are ligand-activated transcription factors, which have the potential to integrate internal metabolic events in an organism, with consequences for control of behaviour. Previous studies from this laboratory have shown that thyroid hormone receptor (TR) isoforms can inhibit oestrogen receptor (ER)alpha-mediated induction of preproenkephalin (PPE) gene expression in the hypothalamus. Also, thyroid hormone administration inhibits lordosis, a behaviour facilitated by PPE expression. We have examined the effect of multiple ligand-binding TR isoforms on the ER-mediated induction of the PPE gene in transient transfection assays in CV-1 cells. On a natural PPE gene promoter fragment containing two putative oestrogen response elements (EREs), both ER alpha and beta isoforms mediate a four to five-fold induction by oestrogen. Cotransfection of TR alpha 1 along with ER alpha inhibited the ER alpha transactivation of PPE by approximately 50%. However, cotransfection with either TR beta 1 or TR beta 2 expression plasmids produced no effect on the ER alpha or ER beta mediated induction of PPE. Therefore, under these experimental conditions, interactions with a single ER isoform are specific to an individual TR isoform. Transfection with a TR alpha 1 DNA-binding mutant could also inhibit ER alpha transactivation, suggesting that competition for binding on the ERE may not be the exclusive mechanism for inhibition. Data with the coactivator, SRC-1, suggested that coactivator squelching may participate in the inhibition. In dramatic contrast, when ER beta is cotransfected, TR alpha 1 stimulated ER beta-mediated transactivation of PPE by approximately eight-fold over control levels. This is the first study revealing specific interactions among nuclear receptor isoforms on a neuroendocrine promoter. These data also suggest that the combinatorics of ER and TR isoforms allow multiple forms of flexible gene regulations in the service of neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones influence both neuronal development and anxiety via the thyroid hormone receptors (TRs). The TRs are encoded by two different genes, TRalpha and TRbeta. The loss of TRalpha1 is implicated in increased anxiety in males, possibly via a hippocampal increase in GABAergic activity. We compared both social behaviors and two underlying and related non-social behaviors, state anxiety and responses to acoustic and tactile startle in the gonadally intact TRalpha1 knockout (alpha1KO) and TRbeta (betaKO) male mice to their wild-type counterparts. For the first time, we show an opposing effect of the two TR isoforms, TRalpha1 and TRbeta, in the regulation of state anxiety, with alpha1 knockout animals (alpha1KO) showing higher levels of anxiety and betaKO males showing less anxiety compared to respective wild-type mice. At odds with the increased anxiety in non-social environments, alpha1KO males also show lower levels of responsiveness to acoustic and tactile startle stimuli. Consistent with the data that T4 is inhibitory to lordosis in female mice, we show subtly increased sex behavior in alpha1KO male mice. These behaviors support the idea that TRalpha1 could be inhibitory to ERalpha driven transcription that ultimately impacts ERalpha driven behaviors such as lordosis. The behavioral phenotypes point to novel roles for the TRs, particularly in non-social behaviors such as state anxiety and startle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of review Novel analyses of the relations between thyroid hormone receptor signaling and estrogen receptor—dependent mechanisms are timely for two sets of reasons. Clinically, both affect mood and foster neuronal growth and regeneration. Mechanistically, they overlap at the levels of DNA recognition elements, coactivators, and signal transduction systems. Crosstalk between thyroid hormone receptors and estrogen receptors is possibly important to integrate external signals to transcription within neurons. Recent findings It has been shown that reproductive functions, including behaviors, driven by estrogens can be antagonized by thyroid hormones, and it has been argued that such crosstalk is biologically adaptive to ensure optimal reproduction. Transcriptional facilitation during transient transfunction studies show that the interactions between thyroid receptor isoforms and estrogen receptor isoforms depend on cell type and promoter context. Overall, this pattern of interactions assures multiple and flexible means of transcriptional regulation. Surprisingly, in some brain areas, thyroid hormone actions can synergize with estrogenic effects, particularly when nongenomic modes of action are considered, such as kinase activation, which, as has been reported, affect later estrogen receptor—induced genomic events. Summary In summary, recent work with nerve cells has contributed to a paradigm shift in how the molecular and behavioral effects of hormones which act through nuclear receptors are viewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) alpha and beta isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRalpha1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen is a ligand for the estrogen receptor (ER), which on binding 17beta-estradiol, functions as a ligand-activated transcription factor and regulates the transcription of target genes. This is the slow genomic mode of action. However, rapid non-genomic actions of estrogen also exist at the cell membrane. Using a novel two-pulse paradigm in which the first pulse rapidly initiates non-genomic actions using a membrane-limited estrogen conjugate (E-BSA), while the second pulse promotes genomic transcription from a consensus estrogen response element (ERE), we have demonstrated that rapid actions of estrogen potentiate the slower transcriptional response from an ERE-reporter in neuroblastoma cells. Since rapid actions of estrogen activate kinases, we used selective inhibitors in the two-pulse paradigm to determine the intracellular signaling cascades important in such potentiation. Inhibition of protein kinase A (PKA), PKC, mitogen activated protein kinase (MAPK) or phosphatidylinositol 3-OH kinase (PI-3K) in the first pulse decreases potentiation of transcription. Also, our data with both dominant negative and constitutive mutants of Galpha subunits show that Galpha(q) initiates the rapid signaling cascade at the membrane in SK-N-BE(2)C neuroblastoma cells. We discuss two models of multiple kinase activation at the membrane Pulses of estrogen induce lordosis behavior in female rats. Infusion of E-BSA into the ventromedial hypothalamus followed by 17beta-estradiol in the second pulse could induce lordosis behavior, demonstrating the applicability of this paradigm in vivo. A model where non-genomic actions of estrogen couple to genomic actions unites both aspects of hormone action.