15 resultados para Histidine

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that germin, which is a marker of the onset of growth in germinating wheat, is an oxalate oxidase, and also that germins possess sequence similarity with legumin and vicilin seed storage proteins. These two pieces of information have been combined in order to generate a 3D model of germin based on the structure of vicilin and to examine the model with regard to a potential oxalate oxidase active site. A cluster of three histidine residues has been located within the conserved beta-barrel structure. While there is a relatively low level of overall sequence similarity between the model and the vicilin structures, the conservation of amino acids important in maintaining the scaffold of the beta-barrel lends confidence to the juxtaposition of the histidine residues. The cluster is similar structurally to those found in copper amine oxidase and other proteins, leading to the suggestion that it defines a metal-binding location within the oxalate oxidase active site. It is also proposed that the structural elements involved in intermolecular interactions in vicilins may play a role in oligomer formation in germin/oxalate oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The levels of zinc in the brain are directly affected by dietary zinc and deficiency has been associated with alcohol withdrawal seizures, excitotoxicity, impaired learning and memory and an accelerated rate of dysfunction in aged brain. Although zinc is essential for a healthy nervous system, high concentrations of zinc are neurotoxic, thus it is important to identify the most effective forms of zinc for treatment of conditions of the central nervous system. Accumulating evidence suggests that zinc-histidine complex (Zn(HiS)(2)) has greater biological potency and enhanced bioavailability compared with other zinc salts and also has antioxidant potential. Therefore, in this study we investigated the ability of zinc-histidine to protect cultured cortical neurons against hydrogen peroxide-induced damage. Pre-treating neurons for 18h with subtoxic concentrations of zinc-histidine (5-25 muM) improved neuronal viability and strongly inhibited hydrogen peroxide-induced (75 muM, 30 min) cell damage as assessed by MTT turnover and morphological analysis 24 It later. Low concentrations of zinc-histidine were more neuroprotective than zinc chloride. There was evidence of an anti-apoptotic mechanism of action as zinc-histidine inhibited hydrogen peroxide-induced caspase-3 activation and c-jun-N-terminal kinase phosphorylation. In summary, zinc supplementation with zinc-histidine protects cultured neurons against oxidative insults and inhibits apoptosis which suggests that zinc-histidine may be beneficial in the treatment of diseases of the CNS associated with zinc deficiency. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently described cupin superfamily of proteins includes the germin and germinlike proteins, of which the cereal oxalate oxidase is the best characterized. This superfamily also includes seed storage proteins, in addition to several microbial enzymes and proteins with unknown function. All these proteins are characterized by the conservation of two central motifs, usually containing two or three histidine residues presumed to be involved with metal binding in the catalytic active site. The present study on the coding regions of Synechocystis PCC6803 identifies a previously unknown group of 12 related cupins, each containing the characteristic two-motif signature. This group comprises 11 single-domain proteins, ranging in length from 104 to 289 residues, and includes two phosphomannose isomerases and two epimerases involved in cell wall synthesis, a member of the pirin group of nuclear proteins, a possible transcriptional regulator, and a close relative-of a cytochrome c551 from Rhodococcus. Additionally, there is a duplicated, two-domain protein that has close similarity to an oxalate decarboxylase from the fungus Collybia velutipes and that is a putative progenitor of the storage proteins of land plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dipeptide L-carnosine has a number of important biological properties. Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc [N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e., Fmoc-Beta-alanine-histidine (Fmoc-BetaAH). It is shown that Fmoc-BetaAH forms well-defined amyloid fibril containing Beta sheets above a critical aggregation concentration, which is determined from pyrene and ThT fluorescence experiments. Twisted fibrils were imaged by cryogenic transmission electron microscopy. The zinc-binding properties of Fmoc-BetaAH were investigated by FTIR and Raman spectroscopy since the formation of metal ion complexes with the histidine residue in carnosine is well-known, and important to its biological roles. Observed changes in the spectra may reflect differences in the packing of the Fmoc-dipeptides due to electrostatic interactions. Cryo-TEM shows that this leads to changes in the fibril morphology. Hydrogelation is also induced by addition of an appropriate concentration of zinc ions. Our work shows that the Fmoc motif can be employed to drive the self-assembly of carnosine into amyloid fibrils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the self-assembly of a peptide A6H comprising a hexa-alanine sequence A6 with a histidine (H) “head group”, which chelates Zn2+ cations. We study the self assembly of A6H and binding of Zn2+ ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a β-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn2+ ions and allow for β-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn2+ ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of low molecular weight tripodal amide/histidine-containing compounds (1–2) have been synthesised and shown to increase the rate of bis-(p-nitrophenyl) phosphate (BNPP) and soman (GD) breakdown in buffered aqueous solution.