8 resultados para High oleic
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is emerging evidence to show that high levels of NEFA contribute to endothelial dysfunction and impaired insulin sensitivity. However, the impact of NEFA composition remains unclear. A total of ten healthy men consumed test drinks containing 50 g of palm stearin (rich in SFA) or high-oleic sunflower oil (rich in MUFA) on separate occasions; a third day included no fat as a control. The fats were emulsified into chocolate drinks and given as a bolus (approximately 10 g fat) at baseline followed by smaller amounts (approximately 3 g fat) every 30 min throughout the 6 h study day. An intravenous heparin infusion was initiated 2 h after the bolus, which resulted in a three- to fourfold increase in circulating NEFA level from baseline. Mean arterial stiffness as measured by digital volume pulse was higher during the consumption of SFA (P,0·001) but not MUFA (P¼0·089) compared with the control. Overall insulin and gastric inhibitory peptide response was greater during the consumption of both fats compared with the control (P,0·001); there was a second insulin peak in response to MUFA unlike SFA. Consumption of SFA resulted in higher levels of soluble intercellular adhesion molecule-1 (sI-CAM) at 330 min than that of MUFA or control (P#0·048). There was no effect of the test drinks on glucose, total nitrite, plasminogen activator inhibitor-1 or endothelin-1 concentrations. The present study indicates a potential negative impact of elevated NEFA derived from the consumption of SFA on arterial stiffness and sI-CAM levels. More studies are needed to fully investigate the impact of NEFA composition on risk factors for CVD.
Resumo:
Four fat blends based on palm fractions in combination with high oleic sunflower oil (HOSF) with a relatively low saturated fatty acid content (29.2±0.85%, i.e. less than 50% of that of butter) were prepared. The saturated fat was located in different triacylglycerols (TAG) structures in each blend. Principal saturated TAG were derived from palm stearin (POs, containing tripalmitoyl glycerol - PPP), palm mid fraction (PMF, containing 1,3-dipalmitoyl-2-oleoyl glycerol - POP) and interesterified PMF (inPMF, containing PPP, POP and rac-1,2-dipalmitoyl-3-oleoyl glycerol - PPO). Thus, in blend 1, composed of POs and HOSF, the saturates resided principally in PPP. In blend 2, composed of POs, PMF and HOSF, the principal saturate-containing TAG were PPP and POP. Blend 3, composed of inPMF and HOSF, was similar to blend 2 except that the disaturated TAG comprised a 2:1 mixture of PPO:POP. Finally, blend 4, a mixture of PMF and HOSF, had saturates present mainly as POP. The physical properties and the functionality of blends, as shortenings for puff pastry laminated in a warm bakery environment (20-30°C), were compared with each other, and with butter. Puff pastry prepared with blend 1 (POs:HOSF 29:71) and blend 4 (PMF:HOSF 41:59), was very hard; blend 2 (POs:PMF:HOSF 13:19:68) was most similar to butter in the compressibility of the baked product and it performed well in an independent baking trial; blend 3 (inPMF:HOSF 40:60) gave a product that required a higher force for compression than butter.
Resumo:
Four blends formulated with low saturated fatty acid content, with the saturated component rich in stearic acid, were prepared from shea stearin, interesterified shea stearin, fully hardened soybean oil and high oleic sunflower oil in order to study their performance as shortenings in puff pastry products. The blends had a low saturated fatty acid content (30.1 ± 1.1%) compared to butter (65.9%). Saturates in the four blends examined came mainly from SSS, SOS, SSO and SOO. Puff pastry prepared from the blend that contained SOS as the main source of saturates had better properties than the other blends. It was similar to butter in compressibility of the baked product. The β-polymorphic form was present in all blends, although blends containing the highest levels of SSS also showed some β′ crystals.
Resumo:
With the aim of reducing the degree of saturation and increasing the C18:1 cis fatty acid content of milk fat, the effects of feeding high levels of whole cracked rapeseed to dairy cows was investigated together with the effect of increasing dietary intake of vitamin E on the vitamin E content of milk. Using a 3 x 3 factorial design, 90 Holstein dairy cows were fed one of three levels of whole cracked rapeseed (0 (ZR), 134 (MR) and 270 g . kg(-1) diet dry matter (DM) (HR)) in combination with one of three intakes of supplementary vitamin E (0 (ZE), 2 (ME) and 4 g . cow(-1) . d(-1) (HE)). Supplementing with up to almost 2 kg . d(-1) of rapeseed oil (diet HR) significantly (P < 0.001) increased C18: 1cis in milk fat, from 181 (ZR) to over 400 g &BULL; kg(-1) (HR) of total milk fatty acids. Concentrations of C18: 0, C18: 2 and C18: 3 fatty acids were also increased ( P < 0.001) but by a much lesser degree, and the saturated fatty acids C4: 0 to C16: 0 decreased substantially. Vitamin E supplementation increased ( P < 0.01) milk vitamin E concentrations from 1.29 (ZE) to 1.68 mg &BULL; kg(-1) whole milk (HE). Thus substantial changes in milk fat composition with potentially beneficial effects on human health were achieved and without any adverse effects on milk taste. However, these improvements must be offset against the substantial reductions ( P < 0.001) observed in voluntary feed DM consumption (ZR, 20.6; HR, 15.2 kg DM . d(-1)), milk yield (ZR, 22.9; HR, 13.2 kg . d(-1)) and milk fat concentration (ZR, 42.1; HR, 33.4 g . kg(-1)) which would not be commercially sustainable unless a considerable premium was paid for this modified milk. It seems likely that the optimum dose of dietary rapeseed is lower than used in this study.
Resumo:
The reactions between atmospheric oxidants and organic amphiphiles at the air water interface of an aerosol droplet may affect the size and critical supersaturation required for cloud droplet formation. We demonstrate that no reaction occurs between gaseous nitrogen dioxide (1000 ppm in air) and a monolayer of an insoluble amphiphile, oleic acid (cis-9-octadecenoic acid), at the air water interface which removes material from the air water interface. We present evidence that the NO2 isomerises the cis-9-octadecenoic (oleic) acid to trans-9-octadecenoic (elaidic) acid. The study presented here is important for future and previous studies of (1) the reaction between the nitrate radical, NO3, and thin organic films as NO2 is usually present in high concentrations in these experimental systems and (2) the effect of NO2 air pollution on the unsaturated fatty acids and lipids found at the air liquid surface of human lung lining fluid.
Resumo:
Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.