10 resultados para High amylose starch

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The combined effect of pressure and temperature on the rate of gelatinisation of starch present in Thai glutinous rice was investigated. Pressure was found to initiate gelatinisation when its value exceeded 200 MPa at ambient temperature. On the other hand, complete gelatinisation was observed at 500 and 600 MPa at 70 degrees C, when the rice was soaked in water under these conditions for 120 min. A first-order kinetic model describing the rate of gelatinisation was developed to estimate the values of the rate constants as a function of pressure and temperature in the range: 0.1-600 MPa and 20-70 degrees C. The model, based on the well-known Arrhenius and Eyring equations, assumed the form [GRAPHICS] The constants k(0), E-a, and Delta V were found to take values: 31.19 s(-1), 37.89 kJ mol(-1) and -9.98 cm(3) mol(-1), respectively. It was further noted that the extent of gelatinisation occurring at any time, temperature and pressure, could be exclusively correlated with the grain moisture content. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was designed to examine the relationships between protein, condensed tannin and cell wall carbohydrate content and composition and the nutritional quality of seven tropical legumes (Desmodium ovalifolium, Flemingia macrophylla, Leucaena leucocephala, L pallida, L macrophylla, Calliandra calothyrsus and Clitotia fairchildiana). Among the legume species studied, D ovalifolium showed the lowest concentration of nitrogen, while L leucocephala showed the highest. Fibre (NDF) content was lowest in C calothyrsus, L Leucocephala and L pallida and highest in L macrophylla, which had no measurable condensed tannins. The highest tannin concentration was found in C calothyrsus. Total non-structural polysaccharides (NSP) varied among legumes species (lowest in C calothyrsus and highest in D ovalifolium), and glucose and uronic acids were the most abundant carbohydrate constituents in all legumes. Total NSP losses were lowest in F macrophylla and highest in L leucocephala and L pallida. Gas accumulation and acetate and propionate levels were 50% less with F macrophylla and D ovalifolium as compared with L leucocephala. The highest levels of branched-chain fatty acids were observed with non-tanniniferous legumes, and negative concentrations were observed with some of the legumes with high tannin content (D ovalifolium and F macrophylla). Linear regression analysis showed that the presence of condensed tannins was more related to a reduction of the initial rate of gas production (0-48 h) than to the final amount of gas produced or the extent (144h) of dry matter degradation, which could be due to differences in tannin chemistry. Consequently, more attention should be given in the future to elucidating the impact of tannin structure on the nutritional quality of tropical forage legumes. (C) 2003 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19-25 degrees C), were transferred to 4.5 or 9 degrees C at photon flux density (PPFD) of 950 mu mol m(-2) s(-1) with 10-h photoperiod for 58 h and then allowed to recover at 22 degrees C for 16 h (14 h dark and 2 h at PPFD of 180 mu mol m(-2) s(-1)). The ultrastructural responses after 4 h or 26 h at 4.5 degrees C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 degrees C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 degrees C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutinous rice (or sticky rice) has to be soaked in water over an extended period of time before cooking. Soaking provides some of the water needed for starch gelatinisation to occur during cooking. The extent of water uptake during soaking is known to be influenced by temperature. This paper explores the use of very high pressures up to 600 MPa to accelerate water uptake kinetics during soaking. Changes occurring in length, diameter and moisture content were determined as a function of soaking time, pressure and temperature. The results show that length and diameter are positively correlated with all three parameters. However, the expansion ratios are not very high: the maximum length expansion ratio observed was 1.2, while the maximum diameter expansion ratio was 1. 1. Given these low values, it was possible to model water uptake kinetics by using the well-known Fickian model applied to a finite cylinder, assuming uniform average dimensions and effective diffusion coefficient. The results showed that the overall rates of water uptake and the equilibrium moisture content increased with pressure and temperature. The effective diffusion coefficient, on the other hand, did not follow the same trend. Temperature influenced the effective diffusion coefficient below 300 MPa, but had a marginal effect at higher pressures. Moreover, the effective diffusion coefficient increased with temperature between 20 and 50 degrees C, but dropped at higher temperatures. This drop can be attributed to the gelatinisation of starch, which restricts the transport of water. Regardless, it is possible to increase the quantity of water absorbed by rice and the rate at which it is absorbed, by using high pressures and temperatures. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.