121 resultados para Hierarchical bayesian space-time models
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Much of the writing on urban regeneration in the UK has been focused on the types of urban spaces that have been created in city centres. Less has been written about the issue of when the benefits of regeneration could and should be delivered to a range of different interests, and the different time frames that exist in any development area. Different perceptions of time have been reflected in dominant development philosophies in the UK and elsewhere. The trickle-down agendas of the 1980s, for example, were criticised for their focus on the short-term time frames and needs of developers, often at the expense of those of local communities. The recent emergence of sustainability discourses, however, ostensibly changes the time focus of development and promotes a broader concern with new imagined futures. This paper draws on the example of development in Salford Quays, in the North West of England, to argue that more attention needs to be given to the politics of space-time in urban development processes. It begins by discussing the importance and relevance of this approach before turning to the case study and the ways in which the local politics of space-time has influenced development agendas and outcomes. The paper argues that such an approach harbours the potential for more progressive, far-reaching, and sustainable development agendas to be developed and implemented.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.
Resumo:
A parallel interference cancellation (PIC) detection scheme is proposed to suppress the impact of imperfect synchronisation. By treating as interference the extra components in the received signal caused by timing misalignment, the PIC detector not only offers much improved performance but also retains a low structural and computational complexity.
A PIC detector for distributed space-time block coding: 4 relay nodes with imperfect synchronisation
Resumo:
This paper addresses the impact of imperfect synchronisation on D-STBC when combined with incremental relay. To suppress such an impact, a novel detection scheme is proposed, which retains the two key features of the STBC principle: simplicity (i.e. linear computational complexity), and optimality (i.e. maximum likelihood). These two features make the new detector very suitable for low power wireless networks (e.g. sensor networks).
Resumo:
Most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronised. Since such an assumption is difficult to achieve in many practical systems, this paper proposes a simple yet optimum detector for the case of two relay nodes, which proves to be much more robust against timing misalignment than the conventional STBC detector.
Resumo:
Most research on distributed space time block coding (STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. By applying STBC to 3-or 4-relay node systems, this paper shows that imperfect synchronisation causes significant performance degradation to the conventional detector. To this end, we propose a new STBC detection solution based on the principle of parallel interference cancellation (PIC). The PIC detector is moderate in computational complexity but is very effective in suppressing the impact of imperfect synchronisation.
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
A parallel interference cancellation (PIC) detection scheme is proposed to suppress the impact of imperfect synchronisation. By treating as interference the extra components in the received signal caused by timing misalignment, the PIC detector not only offers much improved performance but also retains a low structural and computational complexity.
Resumo:
Significant performance gain can potentially be achieved by employing distributed space-time block coding (D-STBC) in ad hoc or mesh networks. So far, however, most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronized. Considering the difficulty in meeting such an assumption in many practical systems, this paper proposes a simple and near-optimum detection scheme for the case of two relay nodes, which proves to be able to handle far greater timing misalignment than the conventional STBC detector.
Resumo:
Most research on Distributed Space-Time Block Coding (D-STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. This paper applies STBC to 4-relaynode systems under quasi-synchronisation and derives a new detector based on parallel interference cancellation, which proves to be very effective in suppressing the impact of imperfect synchronisation.