4 resultados para Heures de Savoie.

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assist in comparing the computational techniques used in different models, the authors propose a standardized set of one-dimensional numerical experiments that could be completed for each model. The results of these experiments, with a simplified form of the computational representation for advection, diffusion, pressure gradient term, Coriolis term, and filter used in the models, should be reported in the peer-reviewed literature. Specific recommendations are described in this paper.