17 resultados para Heterometallic carbonyl complexes
em CentAUR: Central Archive University of Reading - UK
Resumo:
The electronic properties of four divinylanthracene-bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ[BOND]CH[DOUBLE BOND]CHArCH[DOUBLE BOND]CH)] (Ar=9,10-anthracene (1), 1,5-anthracene (2), 2,6-anthracene (3), 1,8-anthracene (4)) obtained by molecular spectroscopic methods (IR, UV/Vis/near-IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C[TRIPLE BOND]O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1, except oxidized 1+, the electronic absorption spectra of complexes 2+, 3+, and 4+ all display the characteristic near-IR band envelopes that have been deconvoluted into three Gaussian sub-bands. Two of the sub-bands belong mainly to metal-to-ligand charge-transfer (MLCT) transitions according to results from time-dependent DFT calculations. EPR spectroscopy of chemically generated 1+–4+ proves largely ligand-centered spin density, again in accordance with IR spectra and DFT calculations results.
Resumo:
Heterobimetallic complexes [(P−P)Pt(μ-S−S)Rh(cod)]ClO4 (P−P = (PPh3)2, Ph2P(CH2)3PPh2 (dppp), and Ph2P(CH2)4PPh2 (dppb); S−S = -S(CH2)2S- (EDT), -S(CH2)3S- (PDT), -S(CH2)4S- (BDT), cod = 1,5-cyclooctadiene) reacted with CO to form the carbonyl complexes [(P−P)Pt(μ-S−S)Rh(CO)2]ClO4 and then with PR3 ligands to give [(P−P)Pt(μ-S−S)Rh(CO)(PR3)]ClO4. The binuclear framework of these cod complexes was maintained in the reactions reported. The cod complexes were tested as catalyst precursors in the hydroformylation of styrene. HPNMR in situ studies showed that mononuclear species formed under catalytic conditions.
Resumo:
Several new coordinatively unsaturated iron(II) complexes of the types [Fe(EN-iPr)X2] (E = P, S, Se; X = Cl, Br) and [Fe(ON-iPr)2X]X containing bidentate EN ligands based on N-(2-pyridinyl)aminophosphines as well as oxo, thio, and seleno derivatives thereof were prepared and characterized by NMR spectroscopy and X-ray crystallography. Mössbauer spectroscopy and magnetization studies confirmed their high-spin nature with magnetic moments very close to 4.9 μB, reflecting the expected four unpaired d-electrons in all these compounds. Stable low-spin carbonyl complexes of the types [Fe(PN-iPr)2(CO)X]X (X = Cl, Br) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2X2] (X = Br) were obtained by reacting cis-Fe(CO)4X2 with the stronger PN donor ligands, but not with the weaker EN donor ligands (E = O, S, Se). Furthermore, the reactivity of [Fe(PN-iPr)X2] toward CO was investigated by IR spectroscopy. Whereas at room temperature no reaction took place, at −50 °C [Fe(PN-iPr)X2] added readily CO to form, depending on the nature of X, the mono- and dicarbonyl complexes [Fe(PN-iPr)(X)2(CO)] (X = Cl) and [Fe(PN-iPr)(CO)2X2] (X = Cl, Br), respectively. In the case of X = Br, two isomeric dicarbonyl complexes, namely, cis-CO,trans-Br-[Fe(PN-iPr)(CO)2Br2] (major species) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2Br2] (minor species), are formed. The addition of CO to [Fe(PN-iPr)X2] was investigated in detail by means of DFT/B3LYP calculations. This study strongly supports the experimental findings that at low temperature two isomeric low-spin dicarbonyl complexes are formed. For kinetic reasons cis,trans-[Fe(PN-iPr)(CO)2Br2] releases CO at elevated temperature, re-forming [Fe(PN-iPr)Br2], while the corresponding cis,cis isomer is stable under these conditions.
Resumo:
The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.
Resumo:
Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In situ electrolysis within an optically transparent thin-layer electrochemical (OTTLE) cell was applied at 293-243 K in combination with FTIR spectroscopy to monitor spectral changes in the carbonyl stretching region accompanying oxidation of four tetracarbonyl olefin complexes of tungsten(0), viz., trans-[W(CO)(4)(eta(2)-ethene)(2)], trans-[W(CO)(4)(eta(2)-norbornene)(2)], [W(CO)(4)(eta(4)-cycloocta-1,5-diene)], and [W(CO)(4)(eta(4)-norbornadiene)]. In all cases, the one-electron-oxidized radical cations (17-electron complexes) have been identified by their characteristic nu(CO) patterns. For the bidentate diene ligands, the cis stereochemistry is essentially fixed in both the 18- and 17-electron complexes. The radical cation of the trans-bis(ethene) complex was observed only at 243 K, while at room temperature it isomerized rapidly to the corresponding cis-isomer. The thermal stability of the three studied radical cations in the cis configuration correlates with the relative strength of the W-CO bonds in the positions trans to the olefin ligand, which are more affected by the oxidation than the axial W-CO bonds. For the bulky norbornene ligands, their trans configuration in the bis(norbornene) complex remains preserved after the oxidation in the whole temperature range studied. The limited thermal stability of the radical cations of the trans-bis(alkene) complexes is ascribed to dissociation of the alkene ligands. The spectroelectrochemical results are in very good agreement with data obtained earlier by DFT (B3LYP) calculations.
Resumo:
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).
Resumo:
Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.
Resumo:
Reaction of five 4R-benzaldehyde thiosemicarbazones (R = OCH3, CH3, H, Cl and NO2) with [ Ru(PPh3)(3)(-CO)(H) Cl] in refluxing methanol in the presence of a base (NEt3) affords complexes of two different types, viz. 1-R and 2-R. In the 1-R complexes the thiosemicarbazone is coordinated to ruthenium as a dianionic tridentate C,N,S-donor via C-H bond activation. Two triphenylphosphines and a carbonyl are also coordinated to ruthenium. The tricoordinated thiosemicarbazone ligand is sharing the same equatorial plane with ruthenium and the carbonyl, and the PPh3 ligands are mutually trans. In the 2-R complexes the thiosemicarbazone ligand is coordinated to ruthenium as a monoanionic bidentate N, S-donor forming a four-membered chelate ring with a bite angle of 63.91(11)degrees. Two triphenylphosphines, a carbonyl and a hydride are also coordinated to ruthenium. The coordinated thiosemicarbazone ligand, carbonyl and hydride constitute one equatorial plane with the metal at the center, where the carbonyl is trans to the coordinated nitrogen of the thiosemicarbazone and the hydride is trans to the sulfur. The two triphenylphosphines are trans. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the complexes show intense transitions in the visible region, which are assigned, based on DFT calculations, to transitions within orbitals of the thiosemicarbazone ligand. Cyclic voltammetry on the complexes shows two oxidations of the coordinated thiosemicarbazone on the positive side of SCE and a reduction of the same ligand on the negative side.