57 resultados para Hetero-coagulation
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this work we demonstrate the value of performing a Hetero Diels-Alder reaction (HDAR) between Danishefsky’s diene and a range of aldehydes or imines, under microwave irradiation. By using a range of aldehydes and imines, including those derived from carbohydrates, access to functionalised 2,3-dihydro-4H-pyran-4-ones or 2,3-dihydro-4-pyridinones in good to excellent synthetic yields is possible. A particular strength of the methodology is its ability to access mimetics of C-linked disaccharides and C-linked aza disaccharides, targets of current therapeutic interest, in a rapid, convenient and diastereoselective manner. The effect of high pressure on the HDARs involving carbohydrate derived aldehydes and imines is also explored, with enhancement in yields occurring for the aldehyde substrates. Finally, HDARs using carbohydrate derived ketones, enones and enals are described under a range of conditions. Optimum results were obtained under high pressure conditions, with highly functionalized carbohydrate derivatives being afforded, in good yields, in this way.
Resumo:
This review provides a discussion of recent developments in the asymmetric hetero Diels-Alder reaction (AHDAR), with particular emphasis on the synthesis of carbohydrates, their derivatives, and inhibitors of carbohydrate processing enzymes.
Resumo:
Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.
Resumo:
From the carbolithiation of N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 240, and 28 mu M for titanocenes 5a and 5b, respectively. The most cytotoxic titanocene 5c with an IC50 value of 5.5 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 400 times better than titanocene dichloride itself. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.
Resumo:
The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.
Resumo:
The objective of this study was to investigate a novel light backscatter sensor, with a large field of view relative to curd size, for continuous on-line monitoring of coagulation and syneresis to improve curd moisture content control. A three-level, central composite design was employed to study the effects of temperature, cutting time, and CaCl2 addition on cheese making parameters. The sensor signal was recorded and analyzed. The light backscatter ratio followed a sigmoid increase during coagulation and decreased asymptotically after gel cutting. Curd yield and curd moisture content were predicted from the time to the maximum slope of the first derivative of the light backscatter ratio during coagulation and the decrease in the sensor response during syneresis. Whey fat was affected by coagulation kinetics and cutting time, suggesting curd rheological properties at cutting are dominant factors determining fat losses. The proposed technology shows potential for on-line monitoring of coagulation and syneresis. 2007 Elsevier Ltd. All rights reserved..
Resumo:
Four new trinuclear hetero-metallic nickel(II)-cadmium(II) complexes [(NiL)(2)Cd(NCS)(2)] (1A and 1B), [(NiL)(2)Cd(NCO)(2)] (2) and [(NiL)(2)Cd(N-3)(2)] (3) have been synthesized using [NiL] as a so-called "ligand complex" (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Crystal structure analyses reveal that all four complexes contain a trinuclear moiety in which two square planar [NiL] units are bonded to a central cadmium(II) ion through double phenoxido bridges. The Cd(II) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1A and 1B), cyanate (in 2) and azide (in 3). Complexes 1A and 1B have the same molecular formula but crystallize in very different monoclinic unit cells and can be considered as polymorphs. On the other hand, the two isoelectronic complexes 2 and 3 are indeed isomorphous and crystallize only in one form. Their conformation is similar to that observed in 1A.
Resumo:
CONTEXT: The link between long-haul air travel and venous thromboembolism is the subject of continuing debate. It remains unclear whether the reduced cabin pressure and oxygen tension in the airplane cabin create an increased risk compared with seated immobility at ground level. OBJECTIVE: To determine whether hypobaric hypoxia, which may be encountered during air travel, activates hemostasis. DESIGN, SETTING, AND PARTICIPANTS: A single-blind, crossover study, performed in a hypobaric chamber, to assess the effect of an 8-hour seated exposure to hypobaric hypoxia on hemostasis in 73 healthy volunteers, which was conducted in the United Kingdom from September 2003 to November 2005. Participants were screened for factor V Leiden G1691A and prothrombin G20210A mutation and were excluded if they tested positive. Blood was drawn before and after exposure to assess activation of hemostasis. INTERVENTIONS: Individuals were exposed alternately (> or =1 week apart) to hypobaric hypoxia, similar to the conditions of reduced cabin pressure during commercial air travel (equivalent to atmospheric pressure at an altitude of 2438 m), and normobaric normoxia (control condition; equivalent to atmospheric conditions at ground level, circa 70 m above sea level). MAIN OUTCOME MEASURES: Comparative changes in markers of coagulation activation, fibrinolysis, platelet activation, and endothelial cell activation. RESULTS: Changes were observed in some hemostatic markers during the normobaric exposure, attributed to prolonged sitting and circadian variation. However, there were no significant differences between the changes in the hypobaric and the normobaric exposures. For example, the median difference in change between the hypobaric and normobaric exposure was 0 ng/mL for thrombin-antithrombin complex (95% CI, -0.30 to 0.30 ng/mL); -0.02 [corrected] nmol/L for prothrombin fragment 1 + 2 (95% CI, -0.03 to 0.01 nmol/L); 1.38 ng/mL for D-dimer (95% CI, -3.63 to 9.72 ng/mL); and -2.00% for endogenous thrombin potential (95% CI, -4.00% to 1.00%). CONCLUSION: Our findings do not support the hypothesis that hypobaric hypoxia, of the degree that might be encountered during long-haul air travel, is associated with prothrombotic alterations in the hemostatic system in healthy individuals at low risk of venous thromboembolism.
Resumo:
We study the solutions of the Smoluchowski coagulation equation with a regularization term which removes clusters from the system when their mass exceeds a specified cutoff size, M. We focus primarily on collision kernels which would exhibit an instantaneous gelation transition in the absence of any regularization. Numerical simulations demonstrate that for such kernels with monodisperse initial data, the regularized gelation time decreasesas M increases, consistent with the expectation that the gelation time is zero in the unregularized system. This decrease appears to be a logarithmically slow function of M, indicating that instantaneously gelling kernels may still be justifiable as physical models despite the fact that they are highly singular in the absence of a cutoff. We also study the case when a source of monomers is introduced in the regularized system. In this case a stationary state is reached. We present a complete analytic description of this regularized stationary state for the model kernel, K(m1,m2)=max{m1,m2}ν, which gels instantaneously when M→∞ if ν>1. The stationary cluster size distribution decays as a stretched exponential for small cluster sizes and crosses over to a power law decay with exponent ν for large cluster sizes. The total particle density in the stationary state slowly vanishes as [(ν−1)logM]−1/2 when M→∞. The approach to the stationary state is nontrivial: Oscillations about the stationary state emerge from the interplay between the monomer injection and the cutoff, M, which decay very slowly when M is large. A quantitative analysis of these oscillations is provided for the addition model which describes the situation in which clusters can only grow by absorbing monomers.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
Insoluble calcium salts were added to milk to increase total calcium by 30 mM, without changing properties influencing heat stability, such as pH and ionic calcium. There were no major signs of instability associated with coagulation, sediment formation or fouling when subjected to ultra high temperature (UHT) and in-container sterilisation. The buffering capacity was also unaltered. On the other hand, addition of soluble calcium salts reduced pH, increased ionic calcium and caused coagulation to occur. Calcium chloride showed the largest destabilising effect, followed by calcium lactate and calcium gluconate. Milk became unstable to UHT processing at lower calcium additions compared to in-container sterilisation.
Resumo:
Dialysis and ultrafiltration were investigated as methods for measuring pH and ionic calcium and partitioning of divalent cations of milk at high temperatures. It was found that ionic calcium, pH, and total soluble divalent cations decreased as temperature increased between 20 and 80°C in both dialysates and ultrafiltration permeates. Between 90 and 110°C, ionic calcium and pH in dialysates continued to decrease as temperature increased, and the relationship between ionic calcium and temperature was linear. The permeabilities of hydrogen and calcium ions through the dialysis tubing were not changed after the tubing was sterilized for 1h at 120°C. There were no significant differences in pH and ionic calcium between dialysates from raw milk and those from a range of heat-treated milks. The effects of calcium chloride addition on pH and ionic calcium were measured in milk at 20°C and in dialysates collected at 110°C. Heat coagulation at 110°C occurred with addition of calcium chloride at 5.4mM, where pH and ionic calcium of the dialysate were 6.00 and 0.43mM, respectively. Corresponding values at 20°C were pH 6.66 and 2.10mM.