5 resultados para Helmuth Plessner
em CentAUR: Central Archive University of Reading - UK
Resumo:
The combination of virulence gene and antimicrobial resistance gene typing using DNA arrays is a recently developed genomics-based approach to bacterial molecular epidemiology. We have now applied this technology to 523 Salmonella enterica subsp. enterica strains collected from various host sources and public health and veterinary institutes across nine European countries. The strain set included the five predominant Salmonella serovars isolated in Europe (Enteritidis, Typhimurium, Infantis, Virchow, and Hadar). Initially, these strains were screened for 10 potential virulence factors (avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by polymerase chain reaction. The results indicated that only 14 profiles comprising these genes (virulotypes) were observed throughout Europe. Moreover, most of these virulotypes were restricted to only one (n = 9) or two (n = 4) serovars. The data also indicated that the virulotype did not vary significantly with host source or geographical location. Subsequently, a representative subset of 77 strains was investigated using a microarray designed to detect 102 virulence and 49 resistance determinants. The results confirmed and extended the previous observations using the virulo-polymerase chain reaction screen. Strains belonging to the same serovar grouped together, indicating that the broader virulence-associated gene complement corresponded with the serovar. There were, however, some differences in the virulence gene profiles between strains belonging to an individual serovar. This variation occurred primarily within those virulence genes that were prophage encoded, in fimbrial clusters or in the virulence plasmid. It seems likely that such changes enable Salmonella to adapt to different environmental conditions, which might be reflected in serovar-specific ecology. In this strain subset a number of resistance genes were detected and were serovar restricted to a varying degree. Once again the profiles of those genes encoding resistance were similar or the same for each serovar in all hosts and countries investigated.
Resumo:
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring blaCTX-M-group-1 dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both blaCTX-M-group-1 and blaOXA-1-like genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6’)-Ib, catB3, blaOXA-1-like and blaCTX-M-group-1. forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.
Resumo:
The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.
Resumo:
This study aimed to compare ESBL-producing Escherichia coli causing infections in humans with infecting or commensal isolates from animals and isolates from food of animal origin in terms of the strain types, the ESBL gene present and the plasmids that carry the respective ESBL genes. A collection of 353 ESBL-positive E. coli isolates from the UK, the Netherlands and Germany were studied by MLST and ESBL genes were identified. Characterization of ESBL gene-carrying plasmids was performed using PCR-based replicon typing. Moreover, IncI1-Iγ and IncN plasmids were characterized by plasmid MLST. The ESBL-producing E. coli represented 158 different STs with ST131, ST10 and ST88 being the most common. Overall, blaCTX-M-1 was the most frequently detected ESBL gene, followed by blaCTX-M-15, which was the most common ESBL gene in the human isolates. The most common plasmid replicon type overall was IncI1-Iγ followed by multiple IncF replicons. ESBL genes were present in a wide variety of E. coli STs. IncI1-Iγ plasmids that carried the blaCTX-M-1 gene were widely disseminated amongst STs in isolates from animals and humans, whereas other plasmids and STs appeared to be more restricted to isolates from specific hosts.
Resumo:
BACKGROUND: Several clones of extended-spectrum β-lactamase (ESBL)–producing extraintestinal pathogenic Escherichia coli (ExPEC) have globally expanded their distribution. ExPEC infections often originate from the patient’s own intestinal flora, although the degree of overlap between diarrheagenic E. coli and ExPEC pathotypes is unclear. Relatively little is known about antimicrobial drug resistance in the most common diarrheagenic E. coli groups, including enteroaggregative E. coli (EAEC), and bacterial gastroenteritis is generally managed without use of antimicrobial drugs. APPROACHES: We conducted this study to establish the presence and characteristics of ESBL-producing EAEC in a well-defined collection of ESBL-producing isolates. The isolates were from human and animal sources in Germany, the Netherlands, and the United Kingdom. DNA from 359 ESBL isolates was screened for the presence of the EAEC transport regulator gene (aggR), located on the EAEC plasmid, using a real-time PCR assay and the phylogroup was determined for each positive isolate. A microarray was used to detect ESBL genes, such as blaCTX-M, at the group level, as previously described. The antimicrobial drug susceptibilities of EAEC isolates were determined and virulence factors associated with intestinal and extraintestinal infection and with EAEC were investigated . RESULTS AND CONCLUSIONS: We assigned a virulence score (total number of virulence factor genes detected; maximum possible score 22) and a resistance score (total number of drug classes; maximum score 11) to each isolate. We isolated 11 EAEC from humans. Eight of the EAEC were isolated from urine specimens, and 1 was isolated from a blood culture; 63% belonged to phylogroup D (Table). EAEC ST38, the most common (55%) ST, was significantly associated with extraintestinal sites in the subset of 140 human isolates (Fisher exact test, p<0.0001)