8 resultados para Helizitätsmethode, Subtraktionsmethode, Numerische Methoden

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der biologischen Massenspektrometrie (MS) werden überwiegend zwei Ionisationstechniken für die Analyse von grçßeren Biomolekfürlen wie Polypeptiden eingesetzt. Dies sind die Nano-Elektrospray-Ionisation[1,2] (nanoESI) und die matrixunterstfürtzte Laserdesorption/-ionisation[3, 4] (MALDI). Beide Techniken werden als „sanft“ bezeichnet, weil sie die Desorption und Ionisation von intakten Analytmolekfürlen und damit ihre erfolgreiche massenspektrometrische Analyse erlauben. Einer der wichtigsten Unterschiede zwischen diesen beiden Ionisationstechniken liegt in ihrer F�higkeit, mehrfach geladene Ionen zu erzeugen. MALDI erzeugt typischerweise einfach geladene Peptidionen, w�hrend nano- ESI leicht mehrfach geladene Ionen produziert, sogar für Peptide mit einer Masse von weniger als 1000 Da. Die Erzeugung von hoch geladenen Ionen ist wünschenswert, da dies die Verwendung von Massenanalysatoren wie Ionenfallen (inkl. Orbitraps) und Hybrid-Quadrupolinstrumenten ermçglicht, die typischerweise nur einen begrenzten m/z- Bereich (<2000–4000) bieten. Hohe Ladungszust�nde ermçglichen auch die Aufnahme von informativeren Fragmentionenspektren, wenn Methoden wie die kollisionsinduzierte Dissoziation (CID), die Elektroneneinfang-Dissoziation (ECD) und die Elektronentransfer-Dissoziation (ETD) in Kombination mit der Tandem-MS (MS/MS) verwendet werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.