5 resultados para Heat Strain

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life-cycle of shallow frontal waves and the impact of deformation strain on their development is investigated using the idealised version of the Met Office non-hydrostatic Unified Model which includes the same physics and dynamics as the operational forecast model. Frontal wave development occurs in two stages; first, a deformation strain is applied to a front and a positive potential vorticity (PV) strip forms, generated by latent heat release in the frontal updraft; second, as the deformation strain is reduced the PV strip breaks up into individual anomalies. The circulations associated with the PV anomalies cause shallow frontal waves to form. The structure of the simulated frontal waves is consistent with the conceptual model of a frontal cyclone. Deeper frontal waves are simulated if the stability of the atmosphere is reduced. Deformation strain rates of different strengths are applied to the PV strip to determine whether a deformation strain threshold exists above which frontal wave development is suppressed. An objective method of frontal wave activity is defined and frontal wave development was found to be suppressed by deformation strain rates $\ge 0.4\times10^{-5}\mbox{s}^{-1}$. This value compares well with observed deformation strain rate thresholds and the analytical solution for the minimum deformation strain rate needed to suppress barotropic frontal wave development. The deformation strain rate threshold is dependent on the strength of the PV strip with strong PV strips able to overcome stronger deformation strain rates (leading to frontal wave development) than weaker PV strips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the 2003 European heat wave have highlighted the need for society to prepare itself for and cope more effectively with heat waves. This is particularly important in the context of predicted climate change and the likelihood of more frequent extreme climate events; to date, heat as a natural hazard has been largely ignored. In order to develop better coping strategies, this report explores the factors that shape the social impacts of heat waves, and sets out a programme of research to address the considerable knowledge gaps in this area. Heat waves, or periods of anomalous warmth, do not affect everyone; it is the vulnerable individuals or sectors of society who will most experience their effects. The main factors of vulnerability are being elderly, living alone, having a pre-existing disease, being immobile or suffering from mental illness and being economically disadvantaged. The synergistic effects of such factors may prove fatal for some. Heat waves have discernible impacts on society including a rise in mortality, an increased strain on infrastructure (power, water and transport) and a possible rise in social disturbance. Wider impacts may include effects on the retail industry, ecosystem services and tourism. Adapting to more frequent heat waves should include soft engineering options and, where possible, avoid the widespread use of air conditioning which could prove unsustainable in energy terms. Strategies for coping with heat include changing the way in which urban areas are developed or re-developed, and setting up heat watch warning systems based around weather and seasonal climate forecasting and intervention strategies. Although heat waves have discernible effects on society, much remains unknown about their wider social impacts, diffuse health issues and how to manage them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 degrees C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of ribosome modulation factor (RMF) in protecting heat-stressed Escherichia coli cells was identified by the observation that cultures of a mutant strain lacking functional RMF (HMY15) were highly heat sensitive in stationary phase compared to those of the parent strain (W3110). No difference in heat sensitivity was observed between these strains in exponential phase, during which RMF is not synthesised. Studies by differential scanning calorimetry demonstrated that the ribosomes of stationary-phase cultures of the mutant strain had lower thermal stability than those of the parent strain in stationary phase, or exponential-phase ribosomes. More rapid breakdown of ribosomes in the mutant strain during heating was confirmed by rRNA analysis and sucrose density gradient centrifugation. Analyses of ribosome composition showed that the 100S dimers dissociated more rapidly during heating than 70S particles. While ribosome dimerisation is a consequence of the conformational changes caused by RMF binding, it may not therefore be essential for RMF-mediated ribosome stabilisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC) pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS) on human DC from healthy controls and active UC patients. METHODS: Human blood DC from healthy controls (control-DC) and UC patients (UC-DC) were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. RESULTS: UC-DC displayed a reduced stimulatory capacity for T cells (P < 0.05) and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P < 0.05) that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. CONCLUSIONS: We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis.