28 resultados para HYDROXY ESTERS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Toxic phorbol esters from Chinese tallow stimulate protein kinase C. Toxicon25, 1129 – 1233, 1987. — Phorbol esters were isolated from the seeds of Chinese tallow (Sapium sebiferum L. Roxb.). These compounds were based on the tigliane nuclei, 4-deoxyphorbol, 12-deoxyphorbol and 4,20-dideoxy-5-hydroxyphorbol. The pro-inflammatory activity (id50) of the pure compounds was between 0.042 and 2.6 nmoles per ear. Protein kinase C activation assays were carried out on samples of enzyme purified from mammalian brain and the activities (Ka) were in the range 76 – 176 nM. The 4,20-dideoxy-5-hydroxy analogue was inactive in both tests. Chinese tallow, which is used as a substitute for linseed oil, may represent an industrial toxic hazard in terms of both pro-inflammatory and tumour-promoting effects.
Resumo:
A highly stereoselective synthesis of conformationally constrained cyclic γ-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of γ-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.
Resumo:
This toxicology update reviews research over the past four years since publication in 2004 of the first measurement of intact esters of p-hydroxybenzoic acid (parabens) in human breast cancer tissues, and the suggestion that their presence in the human body might originate from topical application of bodycare cosmetics. The presence of intact paraben esters in human body tissues has now been confirmed by independent measurements in human urine, and the ability of parabens to penetrate human skin intact without breakdown by esterases and to be absorbed systemically has been demonstrated through studies not only in vitro but also in vivo using healthy human subjects. Using a wide variety of assay systems in vitro and in vivo, the oestrogen agonist properties of parabens together with their common metabolite (p-hydroxybenzoic acid) have been extensively documented, and, in addition, the parabens have now also been shown to possess androgen antagonist activity, to act as inhibitors of sulfotransferase enzymes and to possess genotoxic activity. With the continued use of parabens in the majority of bodycare cosmetics, there is a need to carry out detailed evaluation of the potential for parabens, together with other oestrogenic and genotoxic co-formulants of bodycare cosmetics, to increase female breast cancer incidence, to interfere with male reproductive functions and to influence development of malignant melanoma which has also recently been shown to be influenced by oestrogenic stimulation. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
This paper addresses the question of whether p-hydroxybenzoic acid, the common metabolite of parabens, possesses oestrogenic activity in human breast cancer cell lines. The alkyl esters of p-hydroxybenzoic acid (parabens) are used widely as preservatives in consumer products to which the human population is exposed and have been shown previously to possess oestrogenic activity and to be present in human breast tumour tissue, which is an oestrogen-responsive tissue. Recent work has shown p-hydroxybenzoic acid to give an oestrogenic response in the rodent uterotrophic assay. We report here that p-hydroxybenzoic acid possesses oestrogenic activity in a panel of assays in human breast cancer cell lines. p-Hydroxybenzoic acid was able to displace [H-3]oestradiol from cytosolic oestrogen receptor of MCF7 human breast cancer cells by 54% at 5 x 10(6)-fold molar excess and by 99% at 10(7)-fold molar excess. It was able to increase the expression of a stably integrated oestrogen responsive reporter gene (ERE-CAT) at a concentration of 5 x 10(-4) M in MCF7 cells after 24 h and 7 days, which could be inhibited by the anti-oestrogen ICI 182 780 (Faslodex, fulvestrant). Proliferation of two human breast cancer cell lines (MCF7, ZR-75-1) could be increased by 10(-5) M p-hydroxybenzoic acid. Following on from previous studies showing a decrease in oestrogenic activity of parabens with shortening of the linear alkyl chain length, this study has compared the oestrogenic activity of p-hydroxybenzoic acid where the alkyl grouping is no longer present with methylparaben, which has the shortest alkyl group. Intrinsic oestrogenic activity of p-hydroxybenzoic acid was similar to that of methylparaben in terms of relative binding to the oestrogen receptor but its oestrogenic activity on gene expression and cell proliferation was lower than that of methylparaben. It can be concluded that removal of the ester group from parabens does not abrogate its oestrogenic activity and that p-hydroxybenzoic acid can give oestrogenic responses in human breast cancer cells. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
The preparation of enantiomerically pure threo-beta-amino-alpha-hydroxy acids via 1,3-dipolar cycloadditions of imine dipolarophiles with the chiral isomunchnone derived from (5R)-5-phenylmorpholin-3-one 1 is described. The cycloadducts were obtained with excellent diastereofacial- and exo-selectivity. Subsequent hydrolysis and chemoselective exocyclic amide cleavage afforded the threo-beta-amino-alpha-hydroxy acids with recovery of the initial chiral auxiliary. (C) 2009 Published by Elsevier Ltd.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Application of olefin metathesis for the synthesis of constrained beta-amino esters from norbornenes
Resumo:
Synthesis of a number of novel, conformationally rigid beta-amino esters has been achieved via a tandem olefin metathesis reaction. The starting materials are readily accessible from the Diels-Alder adduct between cyclopentadiene and maleic anhydride.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Epidemiological studies have shown that ingestion of isoflavone-rich soy products is associated with a reduced risk for the development of breast cancer. In the present study, we investigated the hypothesis that genistein modulates the expression of glutathione S-transferases (GSTs) in human breast cells, thus conferring protection towards genotoxic carcinogens which are GST substrates. Our approach was to use human mammary cell lines MCF-10A and MCF-7 as models for non-neoplastic and neoplastic epithelial breast cells, respectively. MCF-10A cells expressed hGSTA1/2, hGSTA4-4, hGSTM1-1 and hGSTP1-1 proteins, but not hGSTM2-2. In contrast, MCF-7 cells only marginally expressed hGSTA1/2, hGSTA4-4 and hGSTM1-1. Concordant to the protein expression, the hGSTA4 and hGSTP1 mRNA expression was higher in the non-neoplastic cell line. Exposure to genistein significantly increased hGSTP1 mRNA (2.3-fold), hGSTP1-1 protein levels (3.1-fold), GST catalytic activity (4.7-fold) and intracellular glutathione concentrations (1.4-fold) in MCF-10A cells, whereas no effects were observed on GST expression or glutathione concentrations in MCF-7 cells. Preincubation of MCF-10A cells with genistein decreased the extent of DNA damage by 4-hydroxy-2-nonenal (150 mu M) and benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (50 mu M), compounds readily detoxified by hGSTA4-4 and hGSTP1-1. In conclusion, genistein pretreatment protects non-neoplastic mammary cells from certain carcinogens that are detoxified by GSTs, suggesting that dietary-mediated induction of GSTs may be a mechanism contributing to prevention against genotoxic injury in the aetiology of breast cancer.
Resumo:
The interactions between hydroxypropylmethylcellulose (HPMC) and poly(acrylic acid) (PAA) as well as poly(methacrylic acid) (PMMA) resulting in formation of hydrophobic interpolymer complexes (IPC) via hydrogen bonding have been studied in aqueous solutions in acidic medium. The formation of IPC of two different compositions (2:1 and 4:1) has been detected for complexes of PAA and HPMC. The critical pH values for complexation of HPMC with PAA and PMAA were determined by the turbidimetric method. It was found that PAA shows the lower complexation ability compared to PMAA due to the more hydrophobic nature of the latter polyacid. The temperature-induced phase separation in HPMC-PAA solution mixtures depends greatly on the components ratio and PAA molecular weight. The complexation ability of hydroxypropylmethylcellulose with respect to poly(acrylic acid) was found to be similar to the complexation ability of methylcellulose, lower than that of hydroxypropylcellulose and higher than that of hydroxyethylcellulose. (c) 2006 Society of Chemical Industry.
Resumo:
Sapintoxin A (SAP A), a naturally occurring biologically active but non-promoting phorbol ester, acts as an effective in vitro mitogen for freshly derived human melanocytes. Seven days after addition of 50 nM SAP A there was a four to fivefold increase in melanocyte number over that observed in untreated control cultures comparable to that achieved with a 50 nM concentration of 12-0-tetradecanoylphorbol 13-acetate (TPA). The fluorescent stage 2 promoter sapintoxin D (SAP D) also supported the growth of these cells, with a 50 nM dose producing an increase in cell number comparable to that observed with 200 nM TPA. Similar results were obtained with an established, but non-tumorigenic, line of murine melanocytes. The same compounds exerted a potent anti-proliferative effect against transformed melanocyte lines of murine and human origin associated with morphological alterations and an increase in melanin production consistent with induced cytodifferentiation.
Resumo:
Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.