32 resultados para HUMAN TH17 CELLS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption. Maslinic acid, oleanolic acid, erythrodiol, and uvaol are pentacyclic triterpenes, found in the non-glyceride fraction of orujo oil, which have previously been reported to have anti-inflammatory properties. In the present work, we investigated the effect of these minor components on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in six different samples. Uvaol, erythrodiol, and oleanolic acid significantly decreased IL-1 beta and IL-6 production in a dose-dependent manner. All three compounds significantly reduced TNF-alpha production at 100 mu M; however, at 10 mu M, uvaol and oleanolic acid enhanced the generation of TNF-alpha. In contrast, maslinic acid did not significantly alter the concentration of those cytokines, with the exception of a slight inhibitory effect at 100 mu M. All four triterpenes inhibited production of I-309, at 50 mu M and 100 mu M. However, uvaol enhanced I-309 production at 10 mu M. The triterpenic dialcohols had a similar effect on MIG production. In conclusion, this study demonstrates that pentacyclic triterpenes in orujo oil exhibit pro- and anti-inflammatory properties depending on chemical structure and dose, and may be useful in modulating the immune response. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During red wine aging, there is a loss of anthocyanins and the formation of various other pigments, so-called vitisins A, which are formed through the chemical interaction of the original anthocyanins with pyruvic acid. The objective of this study was to investigate the antioxidant activities of the most abundant anthocyanins present in red wine (glycosides of delphinidin, petunidin, and malvidin) and their corresponding vitisins A. Anthocyanins exhibited a higher iron reducing as well as 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulfonate) and peroxyl radical scavenging activity than their corresponding vitisins A. Delphinidin showed the highest antioxidant effect of the tested compounds in all of the assays used. Furthermore, we studied the effect of anthocyanins and vitisins A on platelet aggregation and monocyte and endothelial function. Anthocyanins and vitisins did not affect nitric oxide production and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide plus interferon-gamma-activated macrophages. Furthermore, anthocyanins and vitisins did not change collagen-induced platelet aggregation in vitro. However, anthocyanins and to a lesser extent vitisins exhibited protective effects against TNF-alpha-induced monocyte chemoattractant protein production in primary human endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial cells are primary targets for pro-atherosclerotic stressors such as oxidized LDL (ox-LDL). The isoflavone genistein, on the other hand, is suggested to prevent a variety of processes underlying atherosclerosis and cardiovascular diseases. By analyzing the proteome of EA(.)hy 926 endothelial cells, here we show, that genistein reverses the ox-LDL-induced changes of the steady-state levels of several proteins involved in atherosclerosis. These alterations caused by genistein are functionally linked to the inhibition of ox-LDL induced apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary isoflavones from soy are suggested to protect endothelial cells from damaging effects of endothelial stressors and thereby to prevent atherosclerosis. In search of the molecular targets of isoflavone action, we analyzed the effects of the major soy isoflavone, genistein, on changes in protein expression levels induced by the endothelial stressor homocysteine (Hcy) in EA.hy 926 endothelial cells. Proteins from cells exposed for 24 h to 25 mu M Hcy alone or in combination with 2.5 mu M genistein were separated by two-dimensional gel electrophoresis and those with altered spot intensities were identified by peptide mass fingerprinting, Genistein reversed Hcy-induced changes of proteins involved in metabolism, detoxification, and gene regulation: and some of those effects can be linked functionally to the antiatherosclerotic properties of the soy isoflavone. Alterations of steady-state levels of cytoskeletal proteins by genistein suggested an effect oil apoptosis. As a matter of fact genistein caused inhibition of Hcy-mediated apoptotic cell death as indicated by inhibition of DNA fragmentation and chromatin condensation. In conclusion, proteome analysis allows the rapid identification of cellular target proteins of genistein action in endothelial cells exposed to the endothelial stressor Hcy and therefore enables the identification of molecular pathways of its antiatherosclerotic action

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Epidemiological studies suggest that soy consumption contributes to the prevention of coronary heart disease. The proposed anti-atherogenic effects of soy appear to be carried by the soy isoflavones with genistein as the most abundant compound. Aim of the study To identify proteins or pathways by which genistein might exert its protective activities on atherosclerosis, we analyzed the proteomic response of primary human umbilical vein endothelial cells ( HUVEC) that were exposed to the pro-atherosclerotic stressors homocysteine or oxidized low-density lipoprotein (ox-LDL). Methods HUVEC were incubated with physiological concentrations of homocysteine or ox-LDL in the absence and presence of genistein at concentrations that can be reached in human plasma by a diet rich in soy products (2.5 muM) or by pharmacological intervention ( 25 muM). Proteins from HUVEC were separated by two-dimensional polyacrylamide gel electrophoresis and those that showed altered expression level upon genistein treatment were identified by peptide mass fingerprints derived from tryptic digests of the protein spots. Results Several proteins were found to be differentially affected by genistein. The most interesting proteins that were potently decreased by homocysteine treatment were annexin V and lamin A. Annexin V is an antithrombotic molecule and mutations in nuclear lamin A have been found to result in perturbations of plasma lipids associated with hypertension. Genistein at low and high concentrations reversed the stressor-induced decrease of these anti-atherogenic proteins. Ox-LDL treatment of HUVEC resulted in an increase in ubiquitin conjugating enzyme 12, a protein involved in foam cell formation. Treatment with genistein at both doses reversed this effect. Conclusions Proteome analysis allows the identification of potential interactions of dietary components in the molecular process of atherosclerosis and consequently provides a powerful tool to define biomarkers of response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermented dairy products and their component bacteria have been shown to possess health-promoting functions in consumers and recently have been suggested to reduce the risk of colorectal cancer. Kefir and ayran are two popular fermented milk drinks that have their origins in the Caucasus region of Russia. The present study aimed to evaluate their potential anticancer properties in colon cells in vitro. The comet assay and transepithelial resistance assay were used to assess the effect of kefir and ayran supernatants on genotoxicity of fecal water samples and on intestinal tight junction integrity. Their antioxidant capacity was measured by trolox equivalent antioxidant capacity assay and compared with that of unfermented milk. The results showed that DNA damage induced by 2 of 4 fecal water samples was significantly decreased by kefir and ayran supernatants and with ayran the effect was dose-dependent. However no effect on intestinal tight junctions was observed. The supernatants of kefir and ayran contained high amounts of acetic and lactic acid but only a very small quantity of caproic and butyric acid, and they showed significantly greater antioxidant capacity than milk. These findings suggest kefir and ayran can reduce DNA damage, which might be due to their antioxidant capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study has been to characterize adult human somatic periodontium-derived stem cells (PDSCS) isolated from human periodontium and to follow their differentiation after cell culture. PDSCS were isolated from human periodontal tissue and cultured as spheres in serum-free medium. After 10 days the primary spheres were dissociated and the secondary spheres sub-cultured for another 1-2 weeks. Cells from different time points were analyzed, and immunohistochemical and electron microscopic investigations carried out. Histological analysis showed differentiation of spheres deriving from the PDSCS with central production of extracellular matrix beginning 3 days after sub-culturing. Isolated PDSCS developed pseudopodia which contained actin. Tubulin was found in the central portion of the cells. Pseudopodia between different cells anastomosed, indicating intercellular transport. Immunostaining for osteopontin demonstrated a positive reaction in primary spheres and within extracellular matrix vesicles after sub-culturing. In cell culture under serum-free conditions human PDSCS form spheres which are capable of producing extracellular matrix. Further investigations have do be carried out to investigate the capability of these cells to differentiate into osteogenic progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial super-infections resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential of 1,8-cineole for treating primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates Poly(I:C)-induced activity of the anti-viral transcription factor Interferon Regulatory Factor 3, while simultaneously reducing pro-inflammatory NF-κB-activity in human cell lines, inferior turbinate stem cells (ITSCs) and ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with Poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared to Poly(I:C) alone, whereas NF-κB-activity was reduced. Accordingly, 1,8-cineole- and Poly(I:C)-treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared to the Poly(I:C)-treated approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with LPS and 1,8-cineole compared to the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on pro-inflammatory NF-κB-signalling and may thus broaden its field of application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have shown that ingestion of isoflavone-rich soy products is associated with a reduced risk for the development of breast cancer. In the present study, we investigated the hypothesis that genistein modulates the expression of glutathione S-transferases (GSTs) in human breast cells, thus conferring protection towards genotoxic carcinogens which are GST substrates. Our approach was to use human mammary cell lines MCF-10A and MCF-7 as models for non-neoplastic and neoplastic epithelial breast cells, respectively. MCF-10A cells expressed hGSTA1/2, hGSTA4-4, hGSTM1-1 and hGSTP1-1 proteins, but not hGSTM2-2. In contrast, MCF-7 cells only marginally expressed hGSTA1/2, hGSTA4-4 and hGSTM1-1. Concordant to the protein expression, the hGSTA4 and hGSTP1 mRNA expression was higher in the non-neoplastic cell line. Exposure to genistein significantly increased hGSTP1 mRNA (2.3-fold), hGSTP1-1 protein levels (3.1-fold), GST catalytic activity (4.7-fold) and intracellular glutathione concentrations (1.4-fold) in MCF-10A cells, whereas no effects were observed on GST expression or glutathione concentrations in MCF-7 cells. Preincubation of MCF-10A cells with genistein decreased the extent of DNA damage by 4-hydroxy-2-nonenal (150 mu M) and benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (50 mu M), compounds readily detoxified by hGSTA4-4 and hGSTP1-1. In conclusion, genistein pretreatment protects non-neoplastic mammary cells from certain carcinogens that are detoxified by GSTs, suggesting that dietary-mediated induction of GSTs may be a mechanism contributing to prevention against genotoxic injury in the aetiology of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75(NTR), and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75(NTR) positive ITSCs that formed larger neurospheres and proliferated faster than p75(NTR) negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy.