47 resultados para HUMAN POSTURAL CONTROL
em CentAUR: Central Archive University of Reading - UK
Resumo:
Dance is a rich source of material for researchers interested in the integration of movement and cognition. The multiple aspects of embodied cognition involved in performing and perceiving dance have inspired scientists to use dance as a means for studying motor control, expertise, and action-perception links. The aim of this review is to present basic research on cognitive and neural processes implicated in the execution, expression, and observation of dance, and to bring into relief contemporary issues and open research questions. The review addresses six topics: 1) dancers’ exemplary motor control, in terms of postural control, equilibrium maintenance, and stabilization; 2) how dancers’ timing and on-line synchronization are influenced by attention demands and motor experience; 3) the critical roles played by sequence learning and memory; 4) how dancers make strategic use of visual and motor imagery; 5) the insights into the neural coupling between action and perception yielded through exploration of the brain architecture mediating dance observation; and 6) a neuroaesthetics perspective that sheds new light on the way audiences perceive and evaluate dance expression. Current and emerging issues are presented regarding future directions that will facilitate the ongoing dialogue between science and dance.
Resumo:
Saccadic eye movements and fixations are the behavioral means by which we visually sample text during reading. Human oculomotor control is governed by a complex neurophysiological system involving the brain stem, superior colliculus, and several cortical areas [1, 2]. A very widely held belief among researchers investigating primate vision is that the oculomotor system serves to orient the visual axes of both eyes to fixate the same target point in space. It is argued that such precise positioning of the eyes is necessary to place images on corresponding retinal locations, such that on each fixation a single, nondiplopic, visual representation is perceived [3]. Vision works actively through a continual sampling process involving saccades and fixations [4]. Here we report that during normal reading, the eyes do not always fixate the same letter within a word. We also demonstrate that saccadic targeting is yoked and based on a unified cyclopean percept of a whole word since it is unaffected if different word parts are delivered exclusively to each eye via a dichoptic presentation technique. These two findings together suggest that the visual signal from each eye is fused at a very early stage in the visual pathway, even when the fixation disparity is greater than one character (0.29 deg), and that saccade metrics for each eye are computed on the basis of that fused signal.
Resumo:
Objectives: To identify the extent of dual task interference between cognitive and motor tasks, (cognitive motor interference (CMI)) in sitting balance during recovery from stroke; to compare CMI in sitting balance between stroke and non-stroke groups; and to record any changes to CMI during sitting that correlate with functional recovery. Method: 36 patients from stroke rehabilitation settings in three NHS trusts. Healthy control group: 21 older volunteers. Measures of seated postural sway were taken in unsupported sitting positions, alone, or concurrently with either a repetitive utterance task or an oral word category generation task. Outcome measures were variability of sway area, path length of sway, and the number of valid words generated. Results: Stroke patients were generally less stable than controls during unsupported sitting tasks. They showed greater sway during repetitive speech compared with quiet sitting, but did not show increased instability to posture between repetitive speech and word category generation. When compared with controls, stroke patients experienced greater dual task interferences during repetitive utterance but not during word generation. Sway during repetitive speech was negatively correlated with concurrent function on the Barthel ADL index. Conclusions: The stroke patients showed postural instability and poor word generation skills. The results of this study show that the effort of verbal utterances alone was sufficient to disturb postural control early after stroke, and the extent of this instability correlated with concomitant Barthel ADL function.
Resumo:
Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
In this paper a look is taken at how the use of implant technology can be used to either increase the range of the abilities of a human and/or diminish the effects of a neural illness, such as Parkinson's Disease. The key element is the need for a clear interface linking the human brain directly with a computer. The area of interest here is the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Pilot tests and experimentation are invariably carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed here. The paper goes on to describe human experimentation, in particular that carried out by the author himself, which led to him receiving a neural implant which linked his nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them. In particular, feedback to the brain was obtained from the fingertips of a robot hand and ultrasonic (extra) sensory input. A view is taken as to the prospects for the future, both in the near term as a therapeutic device and in the long term as a form of enhancement.
Resumo:
A recent article in this journal challenged claims that a human rights framework should be applied to drug control. This article questions the author’s assertions and reframes them in the context of socio-legal drug scholarship, aiming to build on the discourse concerning human rights and drug use. It is submitted that a rights-based approach is a necessary, indeed obligatory, ethical and legal framework through which to address drug use and that international human rights law provides the proper scope for determining where interferences with individual human rights might be justified on certain, limited grounds.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In terms of evolution, the strategy of catching prey would have been an important part of survival in a constantly changing environment. A prediction mechanism would have developed to compensate for any delay in the sensory-motor system. In a previous study, “proactive control” was found, in which the motion of the hands preceded the virtual moving target. These results implied that the positive phase shift of the hand motion represents the proactive nature of the visual-motor control system, which attempts to minimize the brief error in the hand motion when the target changes position unexpectedly. In our study, a visual target moves in circle (13 cm diameter) on a computer screen, and each subject is asked to keep track of the target’s motion by the motion of a cursor. As the frequency of the target increases, a rhythmic component was found in the velocity of the cursor in spite of the fact that the velocity of the target was constant. The generation of a rhythmic component cannot be explained simply as a feedback mechanism for the phase shifts of the target and cursor in a sensory-motor system. Therefore, it implies that the rhythmic component was generated to predict the velocity of the target, which is a feed-forward mechanism in the sensory-motor system. Here, we discuss the generation of the rhythmic component and its roll in the feed-forward mechanism.
Resumo:
Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.
Resumo:
The alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally very widespread, infecting a large variety of terrestrial animals, insects and even fish, and circulate both in the sylvatic and urban/peri-urban environment, causing considerable human morbidity and mortality. Nevertheless, despite their obvious importance as pathogens, there are currently no effective antiviral drugs with which to treat humans or animals infected by any of these viruses. The EU-supported project—VIZIER (Comparative Structural Genomics of Viral Enzymes Involved in Replication, FP6 Project: 2004-511960) was instigated with an ultimate view of contributing to the development of antiviral therapies for RNA viruses, including the alphaviruses [Coutard, B., Gorbalenya, A.E., Snijder, E.J., Leontovich, A.M., Poupon, A., De Lamballerie, X., Charrel, R., Gould, E.A., Gunther, S., Norder, H., Klempa, B., Bourhy, H., Rohayemj, J., L’hermite, E., Nordlund, P., Stuart, D.I., Owens, R.J., Grimes, J.M., Tuckerm, P.A., Bolognesi, M., Mattevi, A., Coll, M., Jones, T.A., Åqvist, J., Unger, T., Hilgenfeld, R., Bricogne, G., Neyts, J., La Colla, P., Puerstinger, G., Gonzalez, J.P., Leroy, E., Cambillau, C., Romette, J.L., Canard, B., 2008. The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res. 78, 37–46]. This review highlights some of the major features of alphaviruses that have been investigated during recent years. After describing their classification, epidemiology and evolutionary history and the expanding geographic distribution of Chikungunya virus, we review progress in understanding the structure and function of alphavirus replicative enzymes achieved under the VIZIER programme and the development of new disease control strategies.
Resumo:
Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)
Resumo:
In the decade that has elapsed since the suggestion that exposure of the foetal/developing male to environmental oestrogens could be the cause of subsequent reproductive and developmental effects in men, there has been little definitive research to provide conclusions to the hypothesis. Issues of exposure and low potency of environmental oestrogens may have reduced concerns. However, the hypothesis that chemicals applied in body care cosmetics (including moisturizers, creams, sprays or lotions applied to axilla or chest or breast areas) may be affecting breast cancer incidence in women presents a different case scenario, not least in the consideration of the exposure issues. The specific cosmetic type is not relevant but the chemical ingredients in the formulations and the application to the skin is important. The most common group of body care cosmetic formulation excipients, namely p-hydroxybenzoic acid esters or parabens, have been shown recently to be oestrogenic in vitro and in vivo and now have been detected in human breast tumour tissue, indicating absorption (route and causal associations have yet to be confirmed). The hypothesis for a link between oestrogenic ingredients in underarm and body care cosmetics and breast cancer is forwarded and reviewed here in terms of. data on exposure to body care cosmetics and parabens, including dermal absorption; paraben oestrogenicity; the role of oestrogen in breast cancer; detection of parabens in breast tumours; recent epidemiology studies of underarm cosmetics use and breast cancer; the toxicology database; the current regulatory status of parabens and regulatory toxicology data uncertainties. Notwithstanding the major public health issue of the causes of the rising incidence of breast cancer in women, this call for further research may provide the first evidence that environmental factors may be adversely affecting human health by endocrine disruption, because exposure to oestrogenic chemicals through application of body care products (unlike diffuse environmental chemical exposures) should be amenable to evaluation, quantification and control. The exposure issues are clear and the exposed population is large, and these factors should provide the necessary impetus to investigate this potential issue of public health. Copyright (C) 2004 John Wiley Sons, Ltd.