5 resultados para HUMAN AMYGDALA
em CentAUR: Central Archive University of Reading - UK
Resumo:
BACKGROUND: Previous functional imaging studies demonstrating amygdala response to happy facial expressions have all included the presentation of negatively valenced primary comparison expressions within the experimental context. This study assessed amygdala response to happy and neutral facial expressions in an experimental paradigm devoid of primary negatively valenced comparison expressions. METHODS: Sixteen human subjects (eight female) viewed 16-sec blocks of alternating happy and neutral faces interleaved with a baseline fixation condition during two functional magnetic resonance imaging scans. RESULTS: Within the ventral amygdala, a negative correlation between happy versus neutral signal changes and state anxiety was observed. The majority of the variability associated with this effect was explained by a positive relationship between state anxiety and signal change to neutral faces. CONCLUSIONS: Interpretation of amygdala responses to facial expressions of emotion will be influenced by considering the contribution of each constituent condition within a greater subtractive finding, as well as 1) their spatial location within the amygdaloid complex; and 2) the experimental context in which they were observed. Here, an observed relationship between state anxiety and ventral amygdala response to happy versus neutral faces was explained by response to neutral faces.
Resumo:
The amygdala was more responsive to fearful (larger) eye whites than to happy (smaller) eye whites presented in a masking paradigm that mitigated subjects' awareness of their presence and aberrant nature. These data demonstrate that the amygdala is responsive to elements of.
Resumo:
The amygdala is consistently implicated in biologically relevant learning tasks such as Pavlovian conditioning. In humans, the ability to identify individual faces based on the social outcomes they have predicted in the past constitutes a critical form of associative learning that can be likened to “social conditioning.” To capture such learning in a laboratory setting, participants learned about faces that predicted negative, positive, or neutral social outcomes. Participants reported liking or disliking the faces in accordance with their learned social value. During acquisition, we observed differential functional magnetic resonance imaging activation across the human amygdaloid complex consistent with previous lesion, electrophysiological, and functional neuroimaging data. A region of the medial ventral amygdala and a region of the dorsal amygdala/substantia innominata showed signal increases to both Negative and Positive faces, whereas a lateral ventral region displayed a linear representation of the valence of faces such that Negative > Positive > Neutral. This lateral ventral locus also differed from the dorsal and medial loci in that the magnitude of these responses was more resistant to habituation. These findings document a role for the human amygdala in social learning and reveal coarse regional dissociations in amygdala activity that are consistent with previous human and nonhuman animal data.
Resumo:
In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
Resumo:
Parents have large genetic and environmental influences on offspring’s cognition, behavior, and brain. These intergenerational effects are observed in mood disorders, with particularly robust association in depression between mothers and daughters. No studies have thus far examined the neural bases of these intergenerational effects in humans. Corticolimbic circuitry is known to be highly relevant in a wide range of processes including mood regulation and depression. These findings suggest that corticolimbic circuitry may also show matrilineal transmission patterns. We therefore examined human parent-offspring association in this neurocircuitry, and investigated the degree of association in gray matter volume between parent and offspring. We used voxel-wise correlation analysis in a total of 35 healthy families, consisting of parents and their biological offspring. We found positive associations of regional grey matter volume in the corticolimbic circuit including the amygdala, hippocampus, anterior cingulate cortex, and ventromedial prefrontal cortex between biological mothers and daughters. This association was significantly greater than mother-son, father-daughter, and father-son associations. The current study suggests that the corticolimbic circuitry, which has been implicated in mood regulation, shows a matrilineal specific transmission patterns. Our preliminary findings are consistent with what has been found behaviorally in depression, and may have clinical implications for disorders known to have dysfunction in mood regulation such as depression. Studies such as ours will likely bridge animal work examining gene expression in the brains and clinical symptom-based observations, and provide promising ways to investigate intergenerational transmission patterns in the human brain.