28 resultados para HEp-2 cell classification
em CentAUR: Central Archive University of Reading - UK
Resumo:
Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
One common effect of tumor promoters is increased tight junction (TJ) permeability. TJs are responsible for paracellular permeability and integrity of the barrier function. Occludin is one of the main proteins responsible for TJ structure. This study tested the effects of physiological levels of phenol, ammonia, primary bile acids (cholic acid, CA, and chenodeoxycholic acid, CDCA), and secondary bile acids (lithocholic acid, LCA, and deoxycholic acid, DCA) on paracellular permeability using a Caco-2 cell model. Paracellular permeability of Caco-2 monolayers was assessed by transepithelial electrical resistance (TER) and the apical to basolateral flux of [C-14]-mannitol. Secondary, but not primary, bile acids increased permeability as reflected by significantly decreased TER and increased mannitol flux. Both phenol and ammonia also increased permeability. The primary bile acid CA significantly increased occludin expression (P < 0.05), whereas CDCA had no significant effect on occludin expression as compared to the negative control. The secondary bile acids DCA and LCA significantly increased occludin expression (P < 0.05), whereas phenol had no significant effect on the protein expression as compared to the negative control. This suggests that the increased permeability observed with LCA, DCA, phenol, and ammonia was not related to an effect on occludin expression. In conclusion, phenol, ammonia, and secondary bile acids were shown to increase paracellular permeability and reduce epithelial barrier function at doses typical of levels found in fecal samples. The results contribute to the evidence these gut microflora-generated products have tumor-promoting activity.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Resumo:
Previous in vivo studies using PEG 400 showed an enhancement in the bioavailability of ranitidine. This study investigated the effect of PEG 200, 300 and 400 on ranitidine transport across Caco-2 cells. The effect of PEG polymers (20%, v/v) on the bi-directional flux of (3)H-ranitidine across Caco-2 cell monolayers was measured. The concentration dependence of PEG 400 effects on ranitidine transport was also studied. A specific screen for P-glycoprotein (P-gp) activity was used to test for an interaction between PEG and P-gp. In the absence of PEG, ranitidine transport showed over 5-fold greater flux across Caco-2 monolayers in the secretory than the absorptive direction; efflux ratio 5.38. PEG 300 and 400 significantly reduced this efflux ratio (p<0.05), whereas PEG 200 had no effect (p>0.05). In concordance, PEG 300 and 400 showed an interaction with the P-gp transporter, whereas PEG 200 did not. Interestingly, with PEG 400 a non-linear concentration dependence was seen for the inhibition of the efflux ratio of ranitidine, with a maxima at 1%, v/v (p<0.05). The inhibition of ranitidine efflux by PEG 300 and 400 which interact with P-gp provides a mechanism that may account for the observations of ranitidine absorption enhancement by PEG 400 in vivo.
Resumo:
To investigate the role of fimbriae and flagella in the pathogenesis of avian colibacillosis, isogenic insertionally inactivated mutant strains of Escherichia coil O78:K80 strain EC34195 defective in the elaboration of type-1 and curli fimbriae and flagella were constructed by allelic exchange, Single and multiple non-fimbriate and non-flagellate mutant strains were compared to the wild-type in vitro in adherence assays with a HEp-2 cell line, a mucus-secreting cell line HT2916E, a non-mucus-secreting cell line HT2919A, tracheal explant and proximal gut explant, Mutant strains defective in the elaboration of type-1 fimbriae were significantly less adherent - in the order of 90% reduction - than the wild-type strain in all assays. Mutant strains defective in the elaboration of flagella were generally as adherent as the wild-type strain except when assayed with the mucus-secreting cell line HT2916E, for which a significant reduction of adherence - of the order of 90% - compared with the wild-type strain was observed. Mutant strains defective for the elaboration of curb fimbriae adhered as well as the wild-type strain in all assays, except when assayed in tests with gut explant tissue for which a significant reduction of adherence - of the order of 80% - compared with the wild-type strain was observed, Adherence to explants was to epithelial, not serous, surfaces and was 10-fold greater to tracheal than to gut explants, Together, these data support the hypothesis that type-1 fimbriae are significant factors in adherence, aided by flagella for penetration of mucus and curli fimbriae for adherence to the gut.
Resumo:
A candidate live vaccine for avian pathogenic Escherichia coli (APEC) was constructed from a virulent field APEC O78 strain by mutation of the aroA gene. The mutant was highly similar to the parent wild-type strain in respect of colony morphology, motility, growth in suspension, hemagglutination, Congo Red binding, HEp-2 cell adhesion, and the elaboration of surface antigens type 1 fimbriae and flagella, although production of curli fimbriae was reduced marginally. The mutant proved avirulent when inoculated into 1-day-old chicks by spray application and when presented again in the drinking water at 7 days of age. Chickens and turkeys vaccinated with an O78 aroA mutant were protected against a challenge at 6 wk of age by virulent APEC strains.
Resumo:
The suitability of the caco-2 cell line as a model for studying the long term impact of dietary fatty acids on intestinal lipid handling and chylomicron production was examined. Chronic supplementation of caco-2 cells with palmitic acid (PA) resulted in a lower triacylglycerol secretion than oleic acid (OA). This was coupled with a detrimental effect of PA, but not OA, on transepithelial electrical resistance (TER) measurements, suggesting a loss of structural integrity across the cell monolayer. Addition of OA reversed the adverse effects of PA and stearic acid on TER and increased the ability of cells to synthesise and accumulate lipid, but did not normalise the secretion of lipids by caco-2 cells. Increasing amounts of OA and decreasing amounts of PA in the incubation media markedly improved the ability of cells to synthesise apolipoprotein B and secrete lipids. Real time RT-PCR revealed a down regulation of genes involved in lipoprotein synthesis following PA than OA. Electron microscopy showed adverse effects of PA on cellular morphology consistent with immature enterocytes such as stunted microvilli and poor tight junction formation. In conclusion, previously reported differences in lipoprotein secretion by caco-2 cells supplemented with saturated fatty acids (SFA) and OA may partly reflect early cytotoxic effects of SFA on cellular integrity and function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, > 10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.
Resumo:
Independent studies have demonstrated that flagella are associated with the invasive process of Salmonella enterica serotypes, and aflagellate derivatives of Salmonella enterica serotype Enteritidis are attenuated in murine and avian models of infection. One widely held view is that the motility afforded by flagella, probably aided by chemotactic responses, mediates the initial interaction between bacterium and host cell. The adherence and invasion properties of two S. Enteritidis wild-type strains and isogenic aflagellate mutants were assessed on HEp-2 and Div-1 cells that are of human and avian epithelial origin, respectively. Both aflagellate derivatives showed a significant reduction of invasion compared with wild type over the three hours of the assays. Complementation of the defective fliC allele recovered partially the wild-type phenotype. Examination of the bacterium-host cell interaction by electron and confocal microscopy approaches showed that wild-type bacteria induced ruffle formation and significant cytoskeletal rearrangements on HEp-2 cells within 5 minutes of contact. The aflagellate derivatives induced fewer ruffles than wild type. Ruffle formation on the Div-1 cell line was less pronounced than for HEp-2 cells for wild-type S. Enteritidis. Collectively, these data support the hypothesis that flagella play an active role in the early events of the invasive process.
Resumo:
Ruminants harbour both O157:H7 and non-O157 Attaching Effacing Escherichia coli (AEEC) strains but to date only nonO157 AEEC have been shown to induce attaching effacing lesions in naturally infected animals. However, O157 may induce lesions in deliberate oral inoculation studies and persistence is considered dependent upon the bacterially encoded locus for enterocyte effacement. In concurrent infections in ruminants it is unclear whether non-O157 AEEC contribute either positively or negatively to the persistence of E. coli O157:H7. To investigate this, and prior to animal studies, E. coli O157:H7 NCTC 12900, a non-toxigenic strain that persists in conventionally reared sheep, and non-toxigenic AEEC O26:K60 isolates of sheep origin were tested for adherence to Hep-2 tissue culture alone and in competition one with another. Applied together, both strains adhered in similar numbers but lower than when either was applied separately. Pre-incubation of tissue culture with either one strain reduced significantly (P < 0.05) the extent of adherence of the strain that was applied second. It was particularly noticeable that AEEC O26 when applied first reduced adherence and inhibited microcolony formation, as demonstrated by confocal microscopy, of E. coli 01 57:H7. The possibility that prior colonisation of a ruminant by non-O157 AEEC such as O26 may antagonise O157 colonisation and persistence in ruminants is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Attaching and effacing (AE) lesions were observed in the caecum, proximal colon and rectum of one of four lambs experimentally inoculated at 6 weeks. of age with Escherichia coli O157:H7. However, the attached bacteria did not immunostain with O157-specific antiserum. Subsequent bacteriological analysis of samples from this animal yielded two E. coli O115:H- strains, one from the colon (CO) and one from the rectum (RC), and those bacteria forming the AE lesions were shown to be of the O115 serogroup by immunostaining. The O115:H(-)isolates formed microcolonies and attaching and effacing lesions, as demonstrated by the fluorescence actin staining test, on HEp-2 tissue culture cells. Both isolates were confirmed by PCR to encode the epsilon (epsilon) subtype of intimin. Supernates of both O115:H- isolates induced cytopathic effects on Vero cell monolayers, and PCR analysis verified that both isolates encoded EAST1, CNF1 and CNF2 toxins but not Shiga-like toxins. Both isolates harboured similar sized plasmids but-PCR analysis indicated that only one of the O115:H- isolates (CO) possessed the plasmid-associated virulence determinants ehxA and etpD. Neither strain possessed the espP, katP or bfpA plasmid-associated virulence determinants. These E. coli O115:H- strains exhibited a novel combination of virulence determinants and are the first isolates found to possess both CNF1 and CNF2.
Resumo:
In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
Colorectal cancer is one of the most common cancers in Western countries. The World Health Organisation identifies diet as a critical risk factor in the development and progression of this disease and the protective role of high levels of fruit and vegetable consumption. Several studies have shown that apples contain several phenolic compounds that are potent anti-oxidants in humans. However, little is known about other beneficial properties of apple phenolics in cancer. We have used the HT29, HT115 and CaCo-2 cell lines as in vitro models to examine the effect of apple phenolics (0.01–0.1% apple extract) on key stages of colorectal carcinogenesis, namely; DNA damage (Comet assay), colonic barrier function (TER assay), cell cycle progression (DNA content assay) and invasion (Matrigel assay). Our results indicate that a crude extract of apple phenolics can protect against DNA damage, improve barrier function and inhibit invasion (p < 0.05). The anti-invasive effects of the extract were enhanced with twenty-four hour pretreatment of cells (p < 0.05). We have shown that a crude apple extract from waste, rich in phenolic compounds, beneficially influences key stages of carcinogenesis in colon cells in vitro.
Resumo:
We have conducted a detailed investigation into the absorption, metabolism and microflora-dependent transformation of hydroxytyrosol ( HT), tyrosol (TYR) and their conjugated forms, such as oleuropein (OL). Conjugated forms underwent rapid hydrolysis under gastric conditions, resulting in significant increases in the amount of free HT and TYR entering the small intestine. Both HT and TYR transferred across human Caco-2 cell monolayers and rat segments of jejunum and ileum and were subject to classic phase I/II biotransformation. The major metabolites identified were an O-methylated derivative of HT, glucuronides of HT and TYR and a novel glutathionylated conjugate of HT. In contrast, there was no absorption of OL in either model. However, OL was rapidly degraded by the colonic microflora resulting in the formation of HT. Our study provides additional information regarding the breakdown of complex olive oil polyphenols in the GI tract, in particular the stomach and the large intestine.