35 resultados para Guanine Nucleotides

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the duplex d[CG(5-BrU)ACG]2 bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 Å resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co2+ ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40°, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co2+ ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA (‘hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by Λ [Ru(TAP)2(dppz)]2+ have been compared in 5′-{CCGGATCCGG}2 and 5′-{CCGGTACCGG}2 using ps/ns transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′-TA-3′ vs. 5′-AT-3′ binding preference predicted by X-ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intercalating [Ru(TAP)2(dppz)]2+ complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both L- and D-enantiomers of [Ru(TAP)2(dppz)]2+ in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and ps-time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for L- and D-complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full lengths of three genome segments of Iranian wheat stripe virus (IWSV) were amplified by reverse transcription (RT) followed by polymerase chain reaction (PCR) using a primer complementary to tenuivirus conserved terminal sequences. The segments were sequenced and found to comprise 3469, 2337, and 1831 nt, respectively. The gene organization of these segments is similar to that of other known tenuiviruses, each displaying an ambisense coding strategy. IWSV segments, however, are different from those of other viruses with respect to the number of nucleotides and deduced amino acid sequence for each ORF. Depending on the segment, the first 16-22 nt at the 5' end and the first 16 nt at the 3' end are highly conserved among IWSV and rice hoja blanca virus (RHBV), rice stripe virus (RSV) and maize stripe virus ( MStV). In addition, the first 15-18 nt at the 5' end are complementary to the first 16-18 nt at the 3' end. Phylogenetic analyses showed close similarity and a common ancestor for IWSV, RHBV, and Echinochloa hoja blanca virus (EHBV). These findings confirm the position of IWSV as a distinct species in the genus Tenuivirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacovigilance, the monitoring of adverse events (AEs), is an integral part in the clinical evaluation of a new drug. Until recently, attempts to relate the incidence of AEs to putative causes have been restricted to the evaluation of simple demographic and environmental factors. The advent of large-scale genotyping, however, provides an opportunity to look for associations between AEs and genetic markers, such as single nucleotides polymorphisms (SNPs). It is envisaged that a very large number of SNPs, possibly over 500 000, will be used in pharmacovigilance in an attempt to identify any genetic difference between patients who have experienced an AE and those who have not. We propose a sequential genome-wide association test for analysing AEs as they arise, allowing evidence-based decision-making at the earliest opportunity. This gives us the capability of quickly establishing whether there is a group of patients at high-risk of an AE based upon their DNA. Our method provides a valid test which takes account of linkage disequilibrium and allows for the sequential nature of the procedure. The method is more powerful than using a correction, such as idák, that assumes that the tests are independent. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, direct repeats (DRs) of 20-70 nucleotides were identified in the 3' untranslated regions (3'UTR) of flavivirus sequences. To address their functional significance, we have manually generated a pan-flavivirus 3'UTR alignment and correlated it with the corresponding predicted RNA secondary structures. This approach revealed that intra-group-conserved DRs evolved from six long repeated sequences (LRSs) which, as approximately 200-nucleotide domains were preserved only in the genomes of the slowly evolving tick-borne flaviviruses. We propose that short DRs represent the evolutionary remnants of LRSs rather than distinct molecular duplications. The relevance of DRs to virus replication enhancer function, and thus survival, is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full lengths of three genome segments of Iranian wheat stripe virus (IWSV) were amplified by reverse transcription (RT) followed by polymerase chain reaction (PCR) using a primer complementary to tenuivirus conserved terminal sequences. The segments were sequenced and found to comprise 3469, 2337, and 1831 nt, respectively. The gene organization of these segments is similar to that of other known tenuiviruses, each displaying an ambisense coding strategy. IWSV segments, however, are different from those of other viruses with respect to the number of nucleotides and deduced amino acid sequence for each ORF. Depending on the segment, the first 16-22 nt at the 5' end and the first 16 nt at the 3' end are highly conserved among IWSV and rice hoja blanca virus (RHBV), rice stripe virus (RSV) and maize stripe virus ( MStV). In addition, the first 15-18 nt at the 5' end are complementary to the first 16-18 nt at the 3' end. Phylogenetic analyses showed close similarity and a common ancestor for IWSV, RHBV, and Echinochloa hoja blanca virus (EHBV). These findings confirm the position of IWSV as a distinct species in the genus Tenuivirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotides in the terminal loop of the poliovirus 2C cis-acting replication element (2C(CRE)), a 61 nt structured RNA, function as the template for the addition of two uridylate (U) residues to the viral protein VPg. This uridylylation reaction leads to the formation of VPgpUpU, which is used by the viral RNA polymerase as a nucleotide-peptide primer for genome replication. Although VPg primes both positive- and negative-strand replication, the specific requirement for 2C(CRE)-mediated uridylylation for one or both events has not been demonstrated. We have used a cell-free in vitro translation and replication reaction to demonstrate that 2C(CRE) is not required for the initiation of the negative-sense strand, which is synthesized in the absence of 2C(CRE)-mediated VPgpUpU formation. We propose that the 3' poly(A) tail could serve as the template for the formation of a VPg-poly(U) primer that functions in the initiation of negative-sense strands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 angstrom resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)(2) molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.