19 resultados para Growth hormone releasing factor.
em CentAUR: Central Archive University of Reading - UK
Resumo:
This study investigated possible relationships between measurements of the somatotrophic axis in pre-pubertal dairy calves and subsequent milk yields. Endogenous growth hormone (GH) release was measured through a fed and fasted period in fifty 6-month-old Holstein-Friesian heifers and they were then challenged with growth hormone-releasing factor (GRF) to assess their GH release pattern. Insulin-like growth factor-I (IGF-I), insulin and glucose concentrations were measured in relation to time of feeding. Cows were subsequently monitored through their first three lactations to record peak and 305-day milk yields. In the first lactation, milk energy output for the first 120 days of lactation was also calculated. The mean 305-day milk yield increased from 7417 +/- 191 kg in the first lactation (n = 37) to 8749 +/- 252 kg in the third (n = 25). There were no significant relationships between any measures of GH secretion and peak or 305-day yield in any lactation. A highly significant positive relationship was established between the GH peak measured 10 min post-GRF challenge and 120-day milk energy values in the first lactation. This relationship was, however, only present in the subpopulation of 12 cows culled after one or two lactations and was absent in the 25 animals remaining for the third lactation. There were no significant relationships between pre-pubertal IGF-I and fed or fasted insulin or glucose concentrations and any subsequent measurement of yield. The usefulness of GH secretagogue challenges in calves as a predictive test for future milk production is thus limited but may have some bearing on nutrient partitioning and longevity. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In the present study we measured maternal plasma concentrations of two placental neurohormones, corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP), in 58 at-risk pregnant women consecutively enrolled between 28 and 29 wk of pregnancy to evaluate whether their evaluation may predict third trimester-onset preeclampsia ( PE). The statistical significance was assessed by t test. The cut-off points for defining altered CRF and CRF-BP levels for prediction of PE were chosen by receiving operator characteristics curve analysis, and the probability of developing PE was calculated for several combinations of hormone testing results. CRF and CRF-BP levels were significantly ( both P < 0.0001) higher and lower, respectively, in the patients (n = 20) who later developed PE than in those who did not present PE at follow-up. CRF at the cut-off 425.95 pmol/liter achieved a sensitivity of 94.8% and a specificity of 96.9%, whereas CRF-BP at the cut-off 125.8 nmol/liter combined a sensitivity of 92.5% and a specificity of 82.5% as single markers for prediction of PE. The probability of PE was 34.5% in the whole study population, 93.75% when both CRF and CRF-BP levels were changed, and 0% if both hormone markers were unaltered. The measurement of CRF and CRF-BP levels may add significant prognostic information for predicting PE in at-risk pregnant women.
Resumo:
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage133 g/100 g maize silage (GGM); 67 g/100 g maize silage133/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P,0.1) whereas starch and neutral detergent fibre digestibility declined (P,0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P,0.01) with a commensurate reduction in rumen pH (P,0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P,0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.
Resumo:
Context: Pregnant tissues express corticotropin-releasing factor (CRF), a peptide modulating fetal and placental ACTH and cortisol secretion. These actions are modulated by the locally expressed CRF-binding protein (CRF-BP). Objective: The objective of the study was to determine whether CRF, CRF-BP, ACTH, and cortisol concentrations change in amniotic fluid and umbilical cord plasma in the presence of intraamniotic infection/inflammation (IAI) in women with spontaneous labor at term. Design: This was a cross-sectional study. Setting: The study was conducted at a tertiary referral center for obstetric care. Patients: Patients included women in active labor at term with (n = 39) and without (controls; n = 78) IAI. Main Outcome Measures: Amniotic fluid and umbilical cord plasma concentrations of CRF, CRF-BP, ACTH, and cortisol measured by RIA and immunoradiometric assays were measured. Results: In patients with IAI, amniotic fluid CRF (0.97 +/- 0.18 ng/ml) and CRF-BP (33.06 +/- 5.54 nmol/liter) concentrations were significantly (P < 0.001) higher than in controls (CRF: 0.32 +/- 0.04 ng/ml; CRF-BP: 14.69 +/- 2.79 ml). The umbilical cord plasma CRF and CRF-BP concentrations were significantly (P < 0.001 for all) higher in women with IAI than in controls (CRF: 2.96 +/- 0.35 ng/ml vs. 0.38 +/- 0.18 ng/ml; CRF-BP: 152.12 +/- 5.94 nmol/liter vs. 106.9 +/- 5.97 nmol/liter). In contrast, amniotic fluid and umbilical cord plasma ACTH and cortisol concentrations did not differ between groups. Conclusions: Amniotic fluid and umbilical cord plasma CRF and CRF-BP concentrations are increased in women with spontaneous labor at term and IAI. CRF-BP may modulate CRF actions on ACTH and cortisol secretion, playing a pivotal role in limiting the inflammatory process and thus avoiding an overactivation of the fetal/placental hypothalamus-pituitary-adrenal axis at birth.
Resumo:
Context: Inherited GH insensitivity (GHI) is usually caused by mutations in the GH receptor (GHR). Patients present with short stature associated with high GH and low IGF-I levels and may have midfacial hypoplasia ( typical Laron syndrome facial features). We previously described four mildly affected GHI patients with an intronic mutation in the GHR gene (A.(1) -> G.(1) substitution in intron 6), resulting in the activation of a pseudoexon (6 Psi) and inclusion of 36 amino acids. Objective: The study aimed to analyze the clinical and genetic characteristics of additional GHI patients with the pseudoexon (6 Psi) mutation. Design/Patients: Auxological, biochemical, genetic, and haplotype data from seven patients with severe short stature and biochemical evidence of GHI were assessed. Main Outcome Measures: We assessed genotype-phenotype relationship. Results: One patient belongs to the same extended family, previously reported. She has normal facial features, and her IGF-I levels are in the low-normal range for age. The six unrelated patients, four of whom have typical Laron syndrome facial features, have heights ranging from -3.3 to -6.0 SD and IGF-I levels that vary from normal to undetectable. We hypothesize that the marked difference in biochemical and clinical phenotypes might be caused by variations in the splicing efficiency of the pseudoexon. Conclusions: Activation of the pseudoexon in the GHR gene can lead to a variety of GHI phenotypes. Therefore, screening for the presence of this mutation should be performed in all GHI patients without mutations in the coding exons.
Resumo:
Corticotropin-releasing factor (CRF) has been shown to have a central role in physiological adaptation to stress. It is recognized for stimulating the release of adrenocorticotropin from the anterior pituitary gland, and has more recently been implicated as a regulator of autonomic and immunological responses to stress. Much confusion has surrounded the characterization of CRF receptors, with proteins of varying molecular weights having been identified but never purified and characterized. Recently, two CRF receptors have been cloned from brain and pituitary gland, but evidence from in-situ hybridization studies suggests that further CRF receptor types exist. We therefore developed two techniques which enable the isolation of CRF receptors from whole rat brain. The use of a solid-phase CRF analogue affinity column and elution using a competing ligand resulted in the purification of a single protein of 61 kDa. A second technique was devised which allowed the co-isolation of associated signalling proteins and the identification of CRF bound species following purification. CRF was covalently cross-linked to receptors and the complex purified using antibodies specific for the ligand. This enabled the purification of a CRF receptor of approximately 65 kDa and associated alpha and beta gamma G protein subunits. This study demonstrates the successful isolation of CRF receptors which are of different molecular weights to those previously observed from affinity cross-linking studies or predicted from cloned genes. In addition, we confirm the involvement of G proteins in CRF stimulated cell signalling by demonstrating their association with purified CRF receptor.
Resumo:
In view of the reported inflammatory effects of corticotrophin-releasing factor (CRF) and the associated regulatory elements in the gene of its binding protein (BP), we postulate that both BP as well as novel BP-ligands other than CRF may be involved in inflammatory disease. We have investigated BP in the blood of patients with arthritis and septicaemia and have attempted to identify CRF and other BP-ligands in synovial fluid. The BP was found to be significantly elevated in the blood of patients with rheumatoid arthritis and septicaemia. There was less BP-ligand and CRF in synovial fluid from patients with rheumatoid arthritis that from those with osteo- or psoriatic arthritis. There was at least 10-fold more BP-ligand than CRF in the fluid of all three groups of patients. A small amount of immunoreactive human (h)CRF, eluting in the expected position of CRF-41, was detected after high-pressure liquid chromatography of arthritic synovial fluid; however, the bulk of material with BP-ligand binding activity eluted earlier, suggesting that synovial fluid contained novel peptides that interacted with the BP. These results would suggest that the BP and its ligands could play an endocrine immunomodulatory role in inflammatory disease.
Resumo:
We have suggested recently that the fall in plasma CRF-binding protein (BP) during the last few weeks of pregnancy is a direct effect of association with its ligand because of the rapid decrease in plasma BP concentration seen in normal males reaching a nadir some 15 min after a bolus injection of synthetic CRF. In the present study, we have investigated the physicochemical properties of both natural and recombinant BP by gel filtration under physiological conditions and have shown that association of human CRF to this BP results in an increase in molecular weight consistent with the formation of a dimer form of the BP ligand complex. The dimer is more stable when the interaction occurs in the presence of serum or if a peptide with a higher affinity for the BP is substituted as ligand. Experimental evidence would also suggest that the dimer BP has a higher affinity for ligand than the monomeric form. We suggest that this dimerization occurs in vivo when CRF is released into the bloodstream and provides the trigger that causes the uptake of the complex at specific receptor sites.
Resumo:
Antral follicle growth in cattle occurs in two distinct phases; the first 'slow' growth phase spans the time from antrum acquisition to a size of approximately 3 mm detectable by transrectal ultrasound, and the second 'fast' phase is gondadotrophin-dependent and includes cohort growth, dominant follicle (DF) selection, and DF growth. This review summarises current concepts of the relative roles FSH and LH, ovarian and metabolic hormones play mainly in the second phase of antral follicle growth in animals of different reproductive and nutritional states. It is proposed that differential FSH response may enable one cohort follicle to become selected, and that follicular secretions, particularly inhibin, suppress FSH and thus are responsible for DF selection and dominance. Acute dependence of the DF on LH pulses will determine DF lifespan, and the LH pulse profile can be influenced by metabolic hormones such as leptin, providing one possible link for nutritional state and reproduction. Direct ovarian effects of acute and chronic changes in growth hormone, insulin and insulin-like growth factor (IGF)-I have been described on cohort follicles, DF oestrogen activity and on DF growth. Influences of metabolic hormones on early antral follicles undergoing their first 'slow' growth phase are less well described, yet metabolic hormones appear to enhance growth into the cohort available for FSH-induced emergence, and may influence subsequent developmental competence of oocytes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to determine whether any differences in the GH-IGF-I axis in juvenile calves were predictive of fertility problems as adult cows. Endogenous metabolic hormone profiles before and after feeding and the response to a GH-releasing factor (GRF) challenge were measured in prepubertal (6 month) dairy calves. These metabolic parameters were subsequently related to physical characteristics at puberty and to ovarian function during the first lactation. Milk progesterone analysis was used to categorize the animals into those with normal progesterone profiles following calving (n = 17) and those that developed delayed ovulation (DOV1, n = 9) or persistent corpus luteum (PCL1, n = 6) profiles. There were associations between prepubertal GH parameters, glucose and non-esterified fatty acid (NEFA) concentrations and the body condition score at which the animals attained puberty. The calves which subsequently developed DOV1 profiles as cows tended to have a higher GH pulse amplitude during fasting than normal profile animals, they did not show the anticipated decrease in circulating glucose concentrations following a post-prandial rise in insulin and they also had the lowest IGF-I concentrations. The calves that later developed PCL1 had a significantly larger GH pulse amplitude and pulse area than normal profile animals in the fed period and had the highest IGF-I concentrations. There were no differences in prepubertal insulin or NEFA concentrations or in the GH response to a GRF challenge between the different progesterone profile categories. Plasma IGF-I concentrations in prepubertal animals were positively correlated with their post-calving concentrations, whereas glucose concentrations had a negative correlation between these time-periods. These results suggested that the different juvenile endocrine profiles of the DOV1 cows may predispose them to a higher rate of tissue mobilization during lactation and a consequent reduction in fertility, while altered GH and IGF-I levels in PCL1 cows may later contribute to the maintenance of the persistent corpus luteum. Therefore metabolic differences in prepubertal calves were later reflected by altered reproductive function during the first lactation.
Resumo:
In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.
Resumo:
Objective: Enhanced negative feedback and reduced adrenal output are two different models that have been put forth to explain the paradoxical observations of increased release of corticotropin-releasing factor in the face of low cortisol levels in posttraumatic stress disorder (PTSID). To discriminate between these models, the authors measured levels of adrenocorticopic hormone (ACTH) and cortisol at baseline and in response to dexamethasone in medically healthy subjects with and without PTSID. Under conditions of enhanced negative feedback inhibition, ACTH levels would not be altered relative to cortisol levels, but the ACTH response to dexamethasone would be augmented, in concert with the enhanced cortisol response to dexamethasone. In contrast, under conditions of reduced adrenal output, ACTH levels would be expected to be higher at baseline relative to cortisol levels, but the ACTH response to dexamethasone would be unchanged in PTSID relative to healthy comparison subjects. Method: The ACTH and cortisol responses to 0.50 mg of dexamethasone were assessed in 19 subjects (15 men and four women) with PTSID and 19 subjects (14 men and five women) without psychiatric disorder. Results: The ACTH-to-cortisol ratio did not differ between groups before or after dexamethasone, but the subjects with PTSD showed greater suppression of ACTH (as well as cortisol) in response to dexamethasone. Conclusions: The data support the hypothesis of enhanced cortisol negative feedback inhibition of ACTH secretion at the level of the pituitary in PTSD. Pituitary glucocorticoid receptor binding, rather than low adrenal output, is implicated as a likely mechanism for this effect.
Resumo:
This paper will document the early scientific observations that kindled my neuroendocrinological interest in pre-eclampsia, a life-threatening disease that affects both mother and baby. My interest in this subject started with the placental origin of melanotrophin activity, moving on, through corticotrophin-releasing factor and its binding protein, to a tachykinin modified specifically in the placenta by phosphocholine, a post-translational moiety normally used by parasites to avoid immune surveillance and rejection. This work may finally have led to an understanding of the identity of the elusive placental factor that, whilst attempting to compensate for the poor implantation of the placenta, causes the many symptoms seen in the mother during pre-eclampsia.