91 resultados para Greenhouse position

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trends in the position of the DJF Austral jet have been analysed for multi-model ensemble simulations of a subset of high- and low-top models for the periods 1960-2000, 2000-2050, and 2050-2098 under the CMIP5 historical, RCP4.5, and RCP8.5 scenarios. Comparison with ERA-Interim, CFSR and the NCEP/NCAR reanalysis shows that the DJF and annual mean jet positions in CMIP5 models are equatorward of reanalyses for the 1979-2006 mean. Under the RCP8.5 scenario, the mean jet position in the high-top models moves 3 degrees poleward of its 1860-1900 position by 2098, compared to just over 2 degrees for the low-top models. Changes in jet position are linked to changes in the meridional temperature gradient. Compared to low-top models, the high-top models predict greater warming in the tropical upper troposphere due to increased greenhouse gases for all periods considered: up to 0.28 K/decade more in the period 2050-2098 under the RCP8.5 scenario. Larger polar lower-stratospheric cooling is seen in high-top models: -1.64 K/decade compared to -1.40 K/decade in the period 1960-2000, mainly in response to ozone depletion, and -0.41 K/decade compared to -0.12 K/decade in the period 2050-2098, mainly in response to increases in greenhouse gases. Analysis suggests that there may be a linear relationship between the trend in jet position and meridional temperature gradient, even under strong forcing. There were no clear indications of an approach to a geometric limit on the absolute magnitude of the poleward shift by 2100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of a high resolution atmospheric model at T106 resolution, for studying the influence of greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al. The sea surface temperature anomalies have been taken from a previous transient climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms, at the time when the CO2 concentration in the atmosphere had doubled, agrees in geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern Hemisphere. The main reason to this, appear to be connected to changes in the large scale circulation, such as a weaker Hadley circulation and stronger upper air westerlies. The low level vorticity in the hurricane genesis regions is generally reduced compared to the present climate, while the vertical tropospheric wind shear is somewhat increased. Most tropical storm regions indicate reduced surface windspeeds and a slightly weaker hydrological cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model simulations consistently show that surface temperature over land increases more rapidly than over sea in response to greenhouse gas forcing. The enhanced warming over land is not simply a transient effect caused by the land–sea contrast in heat capacities, since it is also present in equilibrium conditions. This paper elucidates the transient adjustment processes over time scales of days to weeks of the surface and tropospheric climate in response to a doubling of CO2 and to changes in sea surface temperature (SST), imposed separately and together, using ensembles of experiments with an atmospheric general circulation model. These adjustment processes can be grouped into three stages: immediate response of the troposphere and surface processes (day 1), fast adjustment of surface processes (days 2–5), and adjustment of the whole troposphere (days 6–20). Some land surface warming in response to doubled CO2 (with unchanged SSTs) occurs immediately because of increased downward longwave radiation. Increased CO2 also leads to reduced plant stomatal resistance and hence restricted evaporation, which increases land surface warming in the first day. Rapid reductions in cloud amount lead in the next few days to increased downward shortwave radiation and further warming, which spreads upward from the surface, and by day 5 the surface and tropospheric response is statistically consistent with the equilibrium value. Land surface warming in response to imposed SST change (with unchanged CO2) is slower. Tropospheric warming is advected inland from the sea, and over land it occurs at all levels together rather than spreading upward from the surface. The atmospheric response to prescribed SST change in about 20 days is statistically consistent with the equilibrium value, and the warming is largest in the upper troposphere over both land and sea. The land surface warming involves reduction of cloud cover and increased downward shortwave radiation, as in the experiment with CO2 change, but in this case it is due to the restriction of moisture supply to the land (indicated by reduced soil moisture), whereas in the CO2 forcing experiment it is due to restricted evaporation despite increased moisture supply (indicated by increased soil moisture). The warming over land in response to SST change is greater than over the sea and is the dominant contribution to the land–sea warming contrast under enhanced CO2 forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates computer-generated written explanations about drug prescriptions that are based on an analysis of both patient and doctor informational needs. Three experiments examine the effects of varying the type of information given about the possible side effects of the medication, and the order of information within the explanation. Experiment 1 investigated the effects of these two factors on people's ratings of how good they consider the explanations to be and of their perceived likelihood of taking the medication, as well as on their memory for the information in the explanation. Experiment 2 further examined the effects of varying information about side effects by separating out the contribution of number and severity of side effects. It was found that participants in this study did not “like” explanations that described severe side effects, and also judged that they would be less likely to take the medication if given such explanations. Experiment 3 therefore investigated whether information about severe side effects could be presented in such a way as to increase judgements of how good explanations are thought to be, as well as the perceived likelihood of adherence. The results showed some benefits of providing additional explanatory information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.