7 resultados para Gravity modelling

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose – This paper aims to investigate the scale and drivers of cross-border real estate development in Western Europe and Central and Eastern Europe. Design/methodology/approach – Placing cross-border real estate development within the framework of foreign direct investment (FDI), conceptual complexities in characterizing the notional real estate developer are emphasized. Drawing upon a transaction database, this paper proxies cross-border real estate development flows with asset sales by developers. Findings – Much higher levels of market penetration by international real estate developers are found in the less mature markets of Central and Eastern Europe. Analysis suggests a complex range of determinants with physical distance remaining a consistent barrier to cross-border development flows. Originality/value – This analysis adds significant value in terms of understanding cross-border real estate development flows. In this study, a detailed examination of the issues based on a rigorous empirical analysis through gravity modelling is offered. The gravity framework is one of the most confirmed empirical regularities in international economics and commonly applied to trade, FDI, migration, foreign portfolio investment inter alia. This paper assesses the extent to which it provides useful insights into the pattern of cross-border real estate development flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean 5 general circulation model. It covers the combination of the geoid information with timemean sea level information derived from satellite altimeter data, to construct a mean dynamic topography (MDT), and considers how this complements the time-varying sea level anomaly, also available from the satellite altimeter. We particularly consider the compatibility of these different fields in their spatial scale content, their temporal rep10 resentation, and in their error covariances. These considerations are very important when the resulting data are to be used to estimate ocean circulation and its corresponding errors. We describe the further steps needed for assimilating the resulting dynamic topography information into an ocean circulation model using three different operational fore15 casting and data assimilation systems. We look at methods used for assimilating altimeter anomaly data in the absence of a suitable geoid, and then discuss different approaches which have been tried for assimilating the additional geoid information. We review the problems that have been encountered and the lessons learned in order the help future users. Finally we present some results from the use of GRACE geoid in20 formation in the operational oceanography community and discuss the future potential gains that may be obtained from a new GOCE geoid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen and phosphorus losses from the catchment of Slapton Ley, a small coastal lake in SW England, were calculated using an adaptation of a model developed by Jorgensen (1980). A detailed survey of the catchment revealed that its land use is dominated by both permanent and temporary grassland (respectively 38 and 32% of its total area), and that the remainder is made up of the cultivation of cereals and field vegetables, and market gardening. Livestock numbers in the catchment constitute ca. 6600 head of cattle, 10,000 sheep, 590 pigs, 1700 poultry and 58 horses. The permanent human population of the area is ca. 2000, served by two small gravity-fed sewage treatment works (STWs). Inputs to, and losses from, farmland in the catchment were computed using Jorgensen’s model, and coefficients derived from the data of Cooke (1976), Gostick (1982), Rast and Lee (1983) and Vollenweider (1968). Allowing for outputs from STWs, the total annual external load of N and P upon Slapton Ley is 160 t (35 kg ha-1) a-1 N, and 4.8 t (1.05 kg ha-1) a-1 P. Accordingly to Vollenweider (1968, 1975), such loadings exceed OECD permissible level by a factor of ca. 50 in the case of N, and ca. 5 in that of P. In order to reduce nutrient loads, attention would need to be paid to both STW and agricultural sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Maritime Continent archipelago, situated on the equator at 95-165E, has the strongest land-based precipitation on Earth. The latent heat release associated with the rainfall affects the atmospheric circulation throughout the tropics and into the extra-tropics. The greatest source of variability in precipitation is the diurnal cycle. The archipelago is within the convective region of the Madden-Julian Oscillation (MJO), which provides the greatest variability on intra-seasonal time scales: large-scale (∼10^7 km^2) active and suppressed convective envelopes propagate slowly (∼5 m s^-1) eastwards between the Indian and Pacific Oceans. High-resolution satellite data show that a strong diurnal cycle is triggered to the east of the advancing MJO envelope, leading the active MJO by one-eighth of an MJO cycle (∼6 days). Where the diurnal cycle is strong its modulation accounts for 81% of the variability in MJO precipitation. Over land this determines the structure of the diagnosed MJO. This is consistent with the equatorial wave dynamics in existing theories of MJO propagation. The MJO also affects the speed of gravity waves propagating offshore from the Maritime Continent islands. This is largely consistent with changes in static stability during the MJO cycle. The MJO and its interaction with the diurnal cycle are investigated in HiGEM, a high-resolution coupled model. Unlike many models, HiGEM represents the MJO well with eastward-propagating variability on intra-seasonal time scales at the correct zonal wavenumber, although the inter-tropical convergence zone's precipitation peaks strongly at the wrong time, interrupting the MJO's spatial structure. However, the modelled diurnal cycle is too weak and its phase is too early over land. The modulation of the diurnal amplitude by the MJO is also too weak and accounts for only 51% of the variability in MJO precipitation. Implications for forecasting and possible causes of the model errors are discussed, and further modelling studies are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modelling flow over orography is introduced which guarantees curl free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain following grids. Curl-free gradients are achieved by using the co-variant components of velocity over orography rather than the usual horizontal and vertical components. In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves. Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with N∆t up to at least 10 (where N is the Brunt-V ̈ais ̈al ̈a frequency). A warm bubble rising over orography is simulated and the curl free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modelling study is presented which investigates in-situ generated changes of the thermosphere and ionosphere during a solar eclipse. Neutral temperatures are expected to drop by up to 40 degrees K at 240 km height in the totality footprint, with neutral winds of up to 26 m/s responding to the change of pressure. Both temperatures and winds are found to respond with a time lag of 30 min after the passing of the Moon's shadow. A gravity wave is generated in the neutral atmosphere and propagates into the opposite hemisphere at around 300 m/s. The combined effects of thermal cooling and downwelling lead to an overall increase in [O], while [N(2)] initially rises and then for several hours after the eclipse is below the "steady state" level. An enhancement of [NmF2] is found and explained by the atmosphere's contraction during, and the reduced [O]/[N(2)] ratio after the eclipse.