84 resultados para Graphic of a Function
em CentAUR: Central Archive University of Reading - UK
Resumo:
This review considers microbial inocula used in in vitro systems from the perspective of their ability to degrade or ferment a particular substrate, rather than the microbial species that it contains. By necessity, this required an examination of bacterial, protozoal and fungal populations of the rumen and hindgut with respect to factors influencing their activity. The potential to manipulate these populations through diet or sampling time are examined, as is inoculum preparation and level. The main alternatives to fresh rumen fluid (i.e., caecal digesta or faeces) are discussed with respect to end-point degradabilities and fermentation dynamics. Although the potential to use rumen contents obtained from donor animals at slaughter offers possibilities, the requirement to store it and its subsequent loss of activity are limitations. Statistical modelling of data, although still requiring a deal of developmental work, may offer an alternative approach. Finally, with respect to the range of in vitro methodologies and equipment employed, it is suggested that a degree of uniformity could be obtained through generation of a set of guidelines relating to the host animal, sampling technique and inoculum preparation. It was considered unlikely that any particular system would be accepted as the 'standard' procedure. However, before any protocol can be adopted, additional data are required (e.g., a method to assess inoculum 'quality' with respect to its fermentative and/or degradative activity), preparation/inoculation techniques need to be refined and a methodology to store inocula without loss of efficacy developed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Lys-gamma 3-MSH is a melanocortin peptide derived from the C-terminal of the 16 kDa fragment of POMC. The physiological role of Lys-gamma 3-MSH is unclear, although it has previously been shown that, although not directly steroidogenic, it can act to potentiate the steroidogenic response of adrenal cortical cells to ACTH. This synergistic effect appears to be correlated with an ability to increase the activity of hormone sensitive lipase (HSL) and therefore the rate of cholesterol ester hydrolysis. Ligand binding studies have suggested that high-affinity binding sites for Lys-gamma 3-MSH exist in the adrenal gland and a number of other rat tissues that express HSL, including adipose, skeletal muscle and testes. To investigate the hypothesis that Lys-gamma 3-MSH may play a wider role in cholesterol and lipid metabolism, we tested the effect of Lys-gamma 3-MSH on lipolysis, an HSL-mediated process, in 3T3-L1 adipocytes. In comparison with other melanocortin peptides, Lys-gamma 3-MSH was found to be a potent stimulator of lipolysis. It was also able to phosphorylate HSL at key serine residues and stimulate the hyper-phosphorylation of perilipin A. The receptor through which the lipolytic actions of Lys-gamma 3-MSH are being mediated is not clear. Attempts to characterise this receptor suggest that either the pharmacology of the melanocortin receptor 5 in 3T3-L1 adipocytes is different from that described when expressed in heterologous systems or the possibility that a further, as yet uncharacterised, receptor exists.
Resumo:
An emerging concept is that disulfide bonds can act as a dynamic scaffold to present mature proteins in different conformational and functional states on the cell surface. Two examples are the conversion of the receptor, integrin a alpha(IIb)beta(3), from a low affinity to a high affinity state, and the interaction of CD4 receptor with the HIV-1 envelope glycoprotein gp120 to promote virus-cell fusion. In both of these cases there is a remodeling of the protein disulfide bonding pattern. The formation and rearrangement of disulfide bonds is modulated by a family of enzymes known as the thiol isomerases, which include protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72. While these enzymes were reported originally to be restricted in location to the endoplasmic reticulum, in some cells thiol isomerases are found on the cell surface. This may indicate a wider role for these enzymes in cell function. In platelets it has been shown that reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion, and granule secretion. Furthermore, the use of function blocking antibodies to either PDI or ERp5 causes inhibition of these functional responses. This review summarizes current knowledge of the extracellular regulation of disulfide exchange and the implications of this in the regulation of cell function.
Resumo:
Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary components that are able to inhibit platelet function and therefore decrease the risk of cardiovascular disease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including a group of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5 d. Platelet aggregation and plasma flavonols were measured at baseline and after 5 d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compounds on platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.
Resumo:
Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial complince (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (sem 2.0) % at baseline and 15.5 (sem 1.1) % after isoflavone treatment compared with 12.4 (sem 1.0) % after placebo treatment (P=0.03). NOx increased from 27.7 (sem 2.7) to 31.1 (sem 3.2) mu m after isoflavones treatment compared with 25.4 (sem 1.5) to 20.4 (sem 1.1) mu m after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.
Resumo:
Molecular dynamics simulations of the events after the photodissociation of CO in the myoglobin mutant L29F in which leucine is replaced by phenylalanine are reported. Using both classical and mixed quantum-classical molecular dynamics calculations, we observed the rapid motion of CO away from the distal heme pocket to other regions of the protein, in agreement with recent experimental results. The experimentally observed and calculated infrared spectra of CO after dissociation are also in good agreement. We compared the results with data from simulations of WT myoglobin. As the time resolution of experimental techniques is increased, theoretical methods and models can be validated at the atomic scale by direct comparison with experiment.
Resumo:
The glutamate decarboxylase (GAD) system is important for the acid resistance of Listeria monocytogenes. We previously showed that under acidic conditions, glutamate (Glt)/γ-aminobutyrate (GABA) antiport is impaired in minimal media but not in rich ones, like brain heart infusion. Here we demonstrate that this behavior is more complex and it is subject to strain and medium variation. Despite the impaired Glt/GABA antiport, cells accumulate intracellular GABA (GABA(i)) as a standard response against acid in any medium, and this occurs in all strains tested. Since these systems can occur independently of one another, we refer to them as the extracellular (GAD(e)) and intracellular (GAD(i)) systems. We show here that GAD(i) contributes to acid resistance since in a ΔgadD1D2 mutant, reduced GABA(i) accumulation coincided with a 3.2-log-unit reduction in survival at pH 3.0 compared to that of wild-type strain LO28. Among 20 different strains, the GAD(i) system was found to remove 23.11% ± 18.87% of the protons removed by the overall GAD system. Furthermore, the GAD(i) system is activated at milder pH values (4.5 to 5.0) than the GAD(e) system (pH 4.0 to 4.5), suggesting that GAD(i) is the more responsive of the two and the first line of defense against acid. Through functional genomics, we found a major role for GadD2 in the function of GAD(i), while that of GadD1 was minor. Furthermore, the transcription of the gad genes in three common reference strains (10403S, LO28, and EGD-e) during an acid challenge correlated well with their relative acid sensitivity. No transcriptional upregulation of the gadT2D2 operon, which is the most important component of the GAD system, was observed, while gadD3 transcription was the highest among all gad genes in all strains. In this study, we present a revised model for the function of the GAD system and highlight the important role of GAD(i) in the acid resistance of L. monocytogenes.
Resumo:
The central role of immune-receptorlike signaling mechanisms in the activation of platelets at sites of vascular injury is well established. Of equal importance to the regulatory systems that control the activation of platelets are those systems that negatively regulate platelets and thereby prevent inappropriate platelet activation and thrombosis. Recent reports have identified a new mechanism through which this may be achieved, which involves signaling via a receptor that contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The role of ITIMs in the control of platelet function is the subject of this review.
Resumo:
The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.
Resumo:
Background and Purpose The discovery that flavonoids are capable of inhibiting platelet function has led to their investigation as potential antithrombotic agents. However, despite the range of studies on the antiplatelet properties of flavonoids, little is known about the mechanisms by which flavonoids inhibit platelet function. In this study, we aimed to explore the pharmacological effects of a polymethoxy flavonoid, nobiletin in the modulation of platelet function. Experimental Approach The ability of nobiletin to modulate platelet function was explored by using a range of in vitro and in vivo experimental approaches. Aggregation, dense granule secretion and spreading assays were performed using washed platelets. The fibrinogen binding, α-granule secretion and calcium mobilisation assays were performed using platelet-rich plasma and whole blood was used in impedance aggregometry and thrombus formation experiments. The effect of nobiletin in vivo was assessed by measuring tail bleeding time using C57BL/6 mice. Key Results Nobiletin was shown to supress a range of well-established activatory mechanisms, including platelet aggregation, granule secretion, integrin modulation, calcium mobilisation and thrombus formation. Nobiletin was shown to extend bleeding time in mice and reduce the phosphorylation of Akt and PLCγ2 within the collagen receptor (GPVI) - stimulated pathway, in addition to increasing the levels of cGMP and phosphorylation of VASP, a protein whose activity is associated with inhibitory cyclic nucleotide signalling. Conclusions and Implications This study provides insight into the underlying molecular mechanisms through which nobiletin modulates haemostasis and thrombus formation. Therefore nobiletin may represent a potential antithrombotic agent of dietary origins.
Resumo:
Prebiotics, probiotics and synbiotics are dietary ingredients with the potential to influence health and mucosal and systemic immune function by altering the composition of the gut microbiota. In the present study, a candidate prebiotic (xylo-oligosaccharide, XOS, 8 g/d), probiotic (Bifidobacterium animalis subsp. lactis Bi-07, 109 colony-forming units (CFU)/d) or synbiotic (8 g XOS+109 CFU Bi-07/d) was given to healthy adults (25–65 years) for 21 d. The aim was to identify the effect of the supplements on bowel habits, self-reported mood, composition of the gut microbiota, blood lipid concentrations and immune function. XOS supplementation increased mean bowel movements per d (P= 0·009), but did not alter the symptoms of bloating, abdominal pain or flatulence or the incidence of any reported adverse events compared with maltodextrin supplementation. XOS supplementation significantly increased participant-reported vitality (P= 0·003) and happiness (P= 0·034). Lowest reported use of analgesics was observed during the XOS+Bi-07 supplementation period (P= 0·004). XOS supplementation significantly increased faecal bifidobacterial counts (P= 0·008) and fasting plasma HDL concentrations (P= 0·005). Bi-07 supplementation significantly increased faecal B. lactis content (P= 0·007), lowered lipopolysaccharide-stimulated IL-4 secretion in whole-blood cultures (P= 0·035) and salivary IgA content (P= 0·040) and increased IL-6 secretion (P= 0·009). XOS supplementation resulted in lower expression of CD16/56 on natural killer T cells (P= 0·027) and lower IL-10 secretion (P= 0·049), while XOS and Bi-07 supplementation reduced the expression of CD19 on B cells (XOS × Bi-07, P= 0·009). The present study demonstrates that XOS induce bifidogenesis, improve aspects of the plasma lipid profile and modulate the markers of immune function in healthy adults. The provision of XOS+Bi-07 as a synbiotic may confer further benefits due to the discrete effects of Bi-07 on the gut microbiota and markers of immune function.
Resumo:
Evidence has been mounting for peripheral functions for tachykinins, a family of neuropeptides including substance P (SP), neurokinin A, and neurokinin B, which are recognized for their roles in the central and peripheral nervous system. The recent discovery of 4 new members of this family, the endokinins (EKA, B, C, and 13), which are distributed peripherally, adds support to the notion that tachykinins have physiologic/endocrine roles in the periphery. In the present study we report a fundamental new function for tachykinins in the regulation of platelet function. We show that SP stimulates platelet aggregation, and underlying this is the intracellular mobilization of calcium and degranulation. We demonstrate the presence of the tachykinin receptors NK1 and NK3 in platelets and present evidence for the involvement of NK1 in SP-mediated platelet aggregation. Platelets were found to contain SP-like immunoreactivity that is secreted upon activation implicating SP-like substances in the autocrine/paracrine regulation of these cells. Indeed, NK1-blocking antibodies inhibited aggregation in response to other agonists. Of particular note is the observation that EKA/B cross-react in the SP immunoassay and are also able to stimulate platelet activation. Together our data implicate tachykinins, specifically SP and EKA/B, in the regulation of platelet function. (C) 2004 by The American Society of Hematology.
Resumo:
In this study we show that both glycogen synthase kinase 3 (GSK3) isoforms, GSK3alpha and GSK3beta, are present in human platelets and are phosphorylated on Ser(21) and Ser(9), respectively, in platelets stimulated with collagen, convulxin and thrombin. Phosphorylation of GSK3alpha/beta was dependent on phosphoinositide 3-kinase (PI3K) activity and independent of platelet aggregation, and correlated with a decrease in GSK3 activity that was preserved by pre-incubating platelets with PI3K inhibitor LY294002. Three structurally distinct GSK3 inhibitors, lithium, SB415286 and TDZD-8, were found to inhibit platelet aggregation. This implicates GSK3 as a potential regulator of platelet function. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.