4 resultados para Graph analysis
em CentAUR: Central Archive University of Reading - UK
Resumo:
Accurately and reliably identifying the actual number of clusters present with a dataset of gene expression profiles, when no additional information on cluster structure is available, is a problem addressed by few algorithms. GeneMCL transforms microarray analysis data into a graph consisting of nodes connected by edges, where the nodes represent genes, and the edges represent the similarity in expression of those genes, as given by a proximity measurement. This measurement is taken to be the Pearson correlation coefficient combined with a local non-linear rescaling step. The resulting graph is input to the Markov Cluster (MCL) algorithm, which is an elegant, deterministic, non-specific and scalable method, which models stochastic flow through the graph. The algorithm is inherently affected by any cluster structure present, and rapidly decomposes a graph into cohesive clusters. The potential of the GeneMCL algorithm is demonstrated with a 5730 gene subset (IGS) of the Van't Veer breast cancer database, for which the clusterings are shown to reflect underlying biological mechanisms. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
Resumo:
Cacao swollen shoot virus (CSSV) causes the Cacao swollen shoot virus disease (CSSVD) and significantly reduces production in West African cacao. This study characterised the current status of the disease in the major cacao growing States in Nigeria and attempted a clarification on the manner of CSSV transmission. Two separate field surveys and sample collections were conducted in Nigeria in summer 2012 and spring 2013. PCR-based screening of cacao leaf samples and subsequent DNA sequencing showed that the disease continues to persist in Ondo and Oyo States and in new cacao sites in Abia, Akwa Ibom, Cross River and Edo States. Mealybug samples collected were identified using a robust approach involving environmental scanning electron microscopy, histology and DNA barcoding, which highlighted the importance of integrative taxonomy in the study. The results show that the genus Planococcus (Planococcus citri (Risso) and/or Planococcus minor (Maskell)) was the most abundant vector (73.5%) at the sites examined followed by Formicococcus njalensis (Laing) (19.0 %). In a laboratory study, the feeding behaviour of Pl. citri, Pseudococcus longispinus (Targioni-Tozzetti) and Pseudococcus viburni (Signoret) on cacao were investigated using electrical penetration graph (EPG) analysis. EPG waveforms reflecting intercellular stylet penetration (C), extracellular salivation (E1e), salivation in sieve elements (E1), phloem ingestion (E2), derailed stylet mechanics (F), xylem ingestion (G) and non-probing phase (Np) were analysed. Individual mealybugs exhibited marked variation within species and significantly differed (p ≤ .05) between species for E1e and E1. PCR-based assessments of the retention time for CSSV in viruliferous Pl. citri, Ps. longispinus and Ps. viburni fed on a non-cacao diet showed that CSSV was still detectable after 144 hours. These unusually long durations for a pathogen currently classified as a semi-persistent virus have implications for the design of non-malvaceous barrier crops currently being considered for the protection of new cacao plantings.