56 resultados para Grand Forks Human Nutrition Research Center.

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hugh Sinclair Unit of Human Nutrition (HSUHN) at the University of Reading was founded in October 1995 with the appointment of Christine Williams OBE as the first Hugh Sinclair Chair in Human Nutrition. This was made possible by the competitively won funds from the estate and legacy of the late Professor Hugh Macdonald Sinclair (1910–1990). The vision for the newly established HSUHN was to ‘strengthen the evidence base for dietary recommendations for prevention of degenerative chronic diseases’. This has remained the research focus of the HSUHN under the leadership of Professors Christine Williams (1995–2005), Ian Rowland (2006–2013) and Julie Lovegrove (2014-present). Our mission is to improve population health and evaluate mechanisms of action for the effects of dietary components on health, which reflects Hugh Sinclair’s life ambition within nutritional science. Over the past 20 years, the HSUHN has developed an international reputation within the nutrition science community, and in recognition of the 20th anniversary, this paper highlights Hugh Sinclair’s contributions to the field of nutrition and key research achievements by members of the Unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrition science finds itself at a major crossroad. On the one hand we can continue the current path, which has resulted in some substantial advances, but also many conflicting messages which impair the trust of the general population, especially those who are motivated to improve their health through diet. The other road is uncharted and is being built over the many exciting new developments in life sciences. This new era of nutrition recognizes the complex relation between the health of the individual, its genome, and the life-long dietary exposure, and has lead to the realisation that nutrition is essentially a gene - environment interaction science. This review on the relation between genotype, diet and health is the first of a series dealing with the major challenges in molecular nutrition, analyzing the foundations of nutrition research. With the unravelling of the human genome and the linking of its variability to a multitude of phenotypes from " healthy'' to an enormously complex range of predispositions, the dietary modulation of these propensities has become an area of active research. Classical genetic approaches applied so far in medical genetics have steered away from incorporating dietary effects in their models and paradoxically, most genetic studies analyzing diet-associated phenotypes and diseases simply ignore diet. Yet, a modest but increasing number of studies are accounting for diet as a modulator of genetic associations. These range from observational cohorts to intervention studies with prospectively selected genotypes. New statistical and bioinformatics approaches are becoming available to aid in design and evaluation of these studies. This review discusses the various approaches used and provides concrete recommendations for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to establish firm evidence for the health effects of dietary polyphenol consumption, it is essential to have quantitative information regarding their dietary intake. The usefulness of the current methods, which rely mainly on the assessment of polyphenol intake using food records and food composition tables, is limited as they fail to assess total intake accurately. This review highlights the problems associated with such methods with regard to polyphenol-intake predictions. We suggest that the development of biological biomarkers, measured in both blood and urine, are essential for making accurate estimates of polyphenol intake. However, the relationship between dietary intakes and nutritional biomarkers are often highly complex. This review identifies the criteria that must be considered in the development of such biomarkers. In addition, we provide an assessment of the limited number of potential biomarkers of polyphenol intake currently available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fat is a major contributor to energy intake in most Western diets, supplying 35–40% of food energy. It is described as being ‘energy-dense’, because a gram of fat (9 kcal/g) yields more than twice as much metabolisable energy as a gram of either carbohydrate or protein (4 kcal/g). Most of the fat we consume in our diet is in the form of triacylglycerol (90-95%), with cholesterol and phospholipids making up the bulk of the remainder. Dietary advice invariably stresses the importance of fat reduction, yet fats have diverse roles in human nutrition. They are important as a source of energy, both for immediate utilisation by the body and in laying down a storage depot (adipose tissue) for later utilisation when food intake is reduced, they act as a vehicle for the ingestion and absorption of fat-soluble vitamins, and they have diverse structural and functional roles in the body. Cholesterol is also an essential component of cell membranes and is the precursor for synthesis of hormones. This chapter describes the structure, digestion, transport and functional properties of dietary fat in the body and explains the basis of associations between fat consumption and chronic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the incorporation into erythrocytes of cis (c)-9,trans (t)-11 conjugated linoleic acid (CLA) and t10,c12 CLA consumed as supplements highly enriched in these isomers. Healthy men (31 8 years) consumed 1, 2, and 4 capsules containing approximately 80 g/100 g of either c9,t11 CLA or t10,c12 CLA for sequential 8-week periods. Fatty acid concentrations in erythrocyte total lipids were determined at baseline and after consumption of the highest dose. The increase in c9,t11 CLA concentration (0.31 g/100 g) was significantly greater than that in t10,c12 CLA (0.19 g/100 g). This was associated with minor changes in concentrations of some fatty acids of chain length greater than 20 carbons. These data suggest selective assimilation of individual CLA isomers into erythrocyte lipids and partial substitution for specific saturated and polyunsaturated fatty acids. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been a rapid growth of interest in exploring the relationship between nutritional therapies and the maintenance of cognitive function in adulthood. Emerging evidence reveals an increasingly complex picture with respect to the benefits of various food constituents on learning, memory and psychomotor function in adults. However, to date, there has been little consensus in human studies on the range of cognitive domains to be tested or the particular tests to be employed. To illustrate the potential difficulties that this poses, we conducted a systematic review of existing human adult randomised controlled trial (RCT) studies that have investigated the effects of 24 d to 36 months of supplementation with flavonoids and micronutrients on cognitive performance. There were thirty-nine studies employing a total of 121 different cognitive tasks that met the criteria for inclusion. Results showed that less than half of these studies reported positive effects of treatment, with some important cognitive domains either under-represented or not explored at all. Although there was some evidence of sensitivity to nutritional supplementation in a number of domains (for example, executive function, spatial working memory), interpretation is currently difficult given the prevailing 'scattergun approach' for selecting cognitive tests. Specifically, the practice means that it is often difficult to distinguish between a boundary condition for a particular nutrient and a lack of task sensitivity. We argue that for significant future progress to be made, researchers need to pay much closer attention to existing human RCT and animal data, as well as to more basic issues surrounding task sensitivity, statistical power and type I error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the substantial economic and social burden of CVD, the need to modify diet and lifestyle factors to reduce risk has become increasingly important. Milk and dairy products, being one of the main contributors to SFA intake in the UK, are a potential target for dietary SFA reduction. Supplementation of the dairy cow's diet with a source of MUFA or PUFA may have beneficial effects on consumers' CVD risk by partially replacing milk SFA, thus reducing entry of SFA into the food chain. A total of nine chronic human intervention studies have used dairy products, modified through bovine feeding, to establish their effect on CVD risk markers. Of these studies, the majority utilised modified butter as their primary test product and used changes in blood cholesterol concentrations as their main risk marker. Of the eight studies that measured blood cholesterol, four reported a significant reduction in total and LDL-cholesterol (LDL-C) following chronic consumption of modified milk and dairy products. Data from one study suggested that a significant reduction in LDL-C could be achieved in both the healthy and hypercholesterolaemic population. Thus, evidence from these studies suggests that consumption of milk and dairy products with modified fatty acid composition, compared with milk and dairy products of typical milk fat composition, may be beneficial to CVD risk in healthy and hypercholesterolaemic individuals. However, current evidence is insufficient and further work is needed to investigate the complex role of milk and cheese in CVD risk and explore the use of novel markers of CVD risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is predicted that non-communicable diseases will account for over 73 % of global mortality in 2020. Given that the majority of these deaths occur in developed countries such as the UK, and that up to 80 % of chronic disease could be prevented through improvements in diet and lifestyle, it is imperative that dietary guidelines and disease prevention strategies are reviewed in order to improve their efficacy. Since the completion of the human genome project our understanding of complex interactions between environmental factors such as diet and genes has progressed considerably, as has the potential to individualise diets using dietary, phenotypic and genotypic data. Thus, there is an ambition for dietary interventions to move away from population-based guidance towards 'personalised nutrition'. The present paper reviews current evidence for the public acceptance of genetic testing and personalised nutrition in disease prevention. Health and clear consumer benefits have been identified as key motivators in the uptake of genetic testing, with individuals reporting personal experience of disease, such as those with specific symptoms, being more willing to undergo genetic testing for the purpose of personalised nutrition. This greater perceived susceptibility to disease may also improve motivation to change behaviour which is a key barrier in the success of any nutrition intervention. Several consumer concerns have been identified in the literature which should be addressed before the introduction of a nutrigenomic-based personalised nutrition service. Future research should focus on the efficacy and implementation of nutrigenomic-based personalised nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.