3 resultados para Grain resistance
em CentAUR: Central Archive University of Reading - UK
Resumo:
With the rising rate of obesity, there is considerable interest in dietary strategies to reduce insulin resistance, a major characteristic of the metabolic syndrome and type 2 diabetes. Diets rich in monounsaturated fatty acids (MUFA) have been suggested as an alternative to low-fat, high-carbohydrate diets to improve glycemic control. However, inconsistent effects have been observed with MUFA-rich diets in both healthy and insulin-resistant individuals. In studies that have reported favorable effects on insulin sensitivity, Mediterranean-style diets have been used that are rich not only in MUFA but also whole-grain foods, fiber, and carbohydrates with a low glycemic index. There is a need for intervention studies to examine the true impact of MUFA-rich oils on glycemic control in both Mediterranean and non-Mediterranean populations. In addition, the metabolic and genotypic status of the participants may also play a role in the inter-individual variability in insulin sensitivity in response to MUFA-rich diets.
Resumo:
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
Resumo:
BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature