37 resultados para Goal programming model
em CentAUR: Central Archive University of Reading - UK
Resumo:
In Central Brazil, the long-term sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, ‘asset value of cattle (representing cattle ownership)' and ‘present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics, and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple ‘no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil.
Resumo:
In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Goal orientation is acknowledged as an important paradigm in requirements engineering. The structure of a goal-responsibility model provides opportunities for appraising the intention of a development. Creating a suitable model under agile constraints (time, incompleteness and catching up after an initial burst of creativity) can be challenging. Here we propose a marriage of UML activity diagrams with goal sketching in order to facilitate the production of goal responsibility models under these constraints.
Resumo:
This paper describes how the business case can be characterized and used to quickly make an initial and structurally complete goal-responsibility model. This eases the problem of bringing disciplined support to key decision makers in a development project in such a way that it can be instantiated quickly and thereafter support all key decision gateways. This process also greatly improves the understanding shared by the key decision makers and helps to identify and manage load-bearing assumptions.
Resumo:
This paper describes how the business case can be characterized and used to quickly make an initial and structurally complete goal-responsibility model. This eases the task of bringing disciplined support to key decision makers in a development project in such a way that it can be instantiated quickly and thereafter support all key decisions. This process also greatly improves the understanding shared by the key decision makers and helps to identify and manage loadbearing assumptions. Recent research has revealed two interesting issues, which are highlighted in this paper.
Resumo:
The games-against-nature approach to the analysis of uncertainty in decision-making relies on the assumption that the behaviour of a decision-maker can be explained by concepts such as maximin, minimax regret, or a similarly defined criterion. In reality, however, these criteria represent a spectrum and, the actual behaviour of a decision-maker is most likely to embody a mixture of such idealisations. This paper proposes that in game-theoretic approach to decision-making under uncertainty, a more realistic representation of a decision-maker's behaviour can be achieved by synthesising games-against-nature with goal programming into a single framework. The proposed formulation is illustrated by using a well-known example from the literature on mathematical programming models for agricultural-decision-making. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a new method for the inclusion of nonlinear demand and supply relationships within a linear programming model. An existing method for this purpose is described first and its shortcomings are pointed out before showing how the new approach overcomes those difficulties and how it provides a more accurate and 'smooth' (rather than a kinked) approximation of the nonlinear functions as well as dealing with equilibrium under perfect competition instead of handling just the monopolistic situation. The workings of the proposed method are illustrated by extending a previously available sectoral model for the UK agriculture.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
Farming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy Constituting 0.80 of the total farming community but possessing only 0.36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers Under a set of farm constraints and varying levels of resource availability and Opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by Way Of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make fanning profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable fanning.
Resumo:
This study sets out to find the best calving pattern for small-scale dairy systems in Michoacan State, central Mexico. Two models were built. First, a linear programming model was constructed to optimize calving pattern and herd structure according to metabolizable energy availability. Second, a Markov chain model was built to investigate three reproductive scenarios (good, average and poor) in order to suggest factors that maintain the calving pattern given by the linear programming model. Though it was not possible to maintain the optimal linear programming pattern, the Markov chain model suggested adopting different reproduction strategies according to period of the year that the cow is expected to calve. Comparing different scenarios, the Markov model indicated the effect of calving interval on calving pattern and herd structure.
Resumo:
In the present research, a 3 × 2 model of achievement goals is proposed and tested. The model is rooted in the definition and valence components of competence, and encompasses 6 goal constructs: task-approach, task-avoidance, self-approach, self-avoidance, other-approach, and other-avoidance. The results from 2 studies provided strong support for the proposed model, most notably the need to separate task-based and self-based goals. Studies 1 and 2 yielded data establishing the 3 × 2 structure of achievement goals, and Study 2 documented the antecedents and consequences of each of the goals in the 3 × 2 model. Terminological, conceptual, and applied issues pertaining to the 3 × 2 model are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
This paper reports the development of a highly parameterised 3-D model able to adopt the shapes of a wide variety of different classes of vehicles (cars, vans, buses, etc), and its subsequent specialisation to a generic car class which accounts for most commonly encountered types of car (includng saloon, hatchback and estate cars). An interactive tool has been developed to obtain sample data for vehicles from video images. A PCA description of the manually sampled data provides a deformable model in which a single instance is described as a 6 parameter vector. Both the pose and the structure of a car can be recovered by fitting the PCA model to an image. The recovered description is sufficiently accurate to discriminate between vehicle sub-classes.
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.