38 resultados para Glucose-stimulated insulin secretion
em CentAUR: Central Archive University of Reading - UK
Resumo:
Genome-wide association studies have identified SNPs reproducibly associated with type 2 diabetes (T2D). We examined the effect of genetic predisposition to T2D on insulin sensitivity and secretion using detailed phenotyping in overweight individuals with no diagnosis of T2D. Furthermore, we investigated whether this genetic predisposition modifies the responses in beta-cell function and insulin sensitivity to a 24-week dietary intervention. We genotyped 25 T2D-associated SNPs in 377 white participants from the RISCK study. Participants underwent an IVGTT prior to and following a dietary intervention that aimed to lower saturated fat intake by replacement with monounsaturated fat or carbohydrate. We composed a genetic predisposition score (T2D-GPS) by summing the T2D risk-increasing alleles of the 25 SNPs and tested for association with insulin secretion and sensitivity at baseline, and with the change in response to the dietary intervention. At baseline, a higher T2D-GPS was associated with lower acute insulin secretion (AIRg 4% lower/risk allele, P = 0.006) and lower insulin secretion for a given level of insulin sensitivity, assessed by the disposition index (DI 5% lower/risk allele, P = 0.002), but not with insulin sensitivity (Si). T2D-GPS did not modify changes in insulin secretion, insulin sensitivity or the disposition index in response to the dietary interventions to lower saturated fat. Participants genetically predisposed to T2D have an impaired ability to compensate for peripheral insulin resistance with insulin secretion at baseline, but this does not modify the response to a reduction in dietary saturated fat through iso-energetic replacement with carbohydrate or monounsaturated fat.
Resumo:
Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes. Methods Since bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]). Results Compared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines). Conclusions/interpretation Together, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.
Resumo:
OBJECTIVE To investigate the relation between serum concentration of 25-hydroxyvitamin D [25(OH)D] and insulin action and secretion. RESEARCH DESIGN AND METHODS In a cross-sectional study of 446 Pan-European subjects with the metabolic syndrome, insulin action and secretion were assessed by homeostasis model assessment (HOMA) indexes and intravenous glucose tolerance test to calculate acute insulin response, insulin sensitivity, and disposition index. Serum 25(OH)D was measured by high-performance liquid chromatography/mass spectrometry. RESULTS The 25(OH)D3 concentration was 57.1 ± 26.0 nmol/l (mean ± SD), and only 20% of the subjects had 25(OH)D3 levels ≥75 nmol/l. In multiple linear analyses, 25(OH)D3 concentrations were not associated with parameters of insulin action or secretion after adjustment for BMI and other covariates. CONCLUSIONS In a large sample of subjects with the metabolic syndrome, serum concentrations of 25(OH)D3 did not predict insulin action or secretion. Clear evidence that D vitamin status directly influences insulin secretion or action is still lacking.
Resumo:
The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.
Resumo:
The present study was carried out to examine the effect of the daily intake of 10 g inulin on fasting blood lipid, glucose and insulin levels in healthy middle-aged men and women with moderately raised total plasma cholesterol (TC) and triacylglycerol (TAG) levels. This study was a doubleblind randomized placebo-controlled parallel study in which fifty-four middle-aged subjects received either inulin or placebo for a period of 8 weeks. Fasting blood samples were collected before the supplementation period (baseline samples 1 and 2, separated by 1 week) and at weeks 4 and 8, with a follow-up at week 12. Compared with baseline values, insulin concentrations were significantly lower at 4 weeks (P,0×01) in the inulin group. There was a trend for TAG values, compared with baseline, to be lower in the inulin group at 8 weeks (P,0×08) returning to baseline concentrations at week 12. On comparison of the inulin and placebo groups, the fasting TAG responses over the 8-week test period were shown to be significantly different (P,0×05, repeated measures ANOVA), which was largely due to lower plasma TAG levels in the inulin group at week 8. The percentage change in TAG levels in the inulin group during the 8-week study was shown to correlate with the initial TAG level of the subjects (rs -0×499, P = 0×004). We therefore conclude that the daily addition of 10 g inulin to the diet significantly reduced fasting insulin concentrations during the 8-week test period and resulted in lower plasma TAG levels, particularly in subjects in whom fasting TAG levels were greater than 1×5 mmol/l. These data support findings from animal studies that fructans influence the formation and/or degradation of TAG-rich lipoprotein particles, and the insulin data are also consistent with recent studies showing attenuation of insulin levels in fructan-treated rats.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects. Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p<0.038), higher fasting insulin concentrations (p<0.028) and higher HOMA IR (p<0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of ω-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p<0.01) and HOMA-IR (p<0.02) as compared with A/A subjects. Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.
Resumo:
Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
Resumo:
Effects of transition from late gestation to early lactation on plasma concentrations of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1-(7-36) amide (GLP-1), and cholecystokinin (CCK) have not been reported in cattle. The objective of the present study was to measure plasma concentrations of GLP-1, GIP, CCK, insulin, glucose, and nonesterified fatty acids in blood plasma obtained from the coccygeal vein of 32 Holstein cows at an average of 11 d before, and 5, 12, and 19 d after calving. Feed dry matter intake (DMI) averaged 14.4, 17.7, and 19.9 kg/d on d 5, 12, and 19 of lactation, respectively, as milk yield increased (30.6, 36.6, and 39.7 kg/d, respectively). Plasma concentrations of insulin and glucose were lower postpartum than prepartum, but did not differ among samples collected after calving. In contrast, plasma concentration of gut peptides increased linearly after calving, perhaps as a consequence of increased feed intake and nutrient absorption; however, the increases in plasma concentrations of GIP and GLP-1 as lactation progressed were not associated with increased DMI per se, and likely reflect the endocrine and metabolic adaptations of lactogenesis. In contrast, increased concentration of CCK was related both to increasing days in milk and DMI. By 19 d postpartum, concentrations of GLP-1, GIP, and CCK increased by 2.3-, 1.8-, and 2.8-fold, respectively, compared with values at 11 d before calving. Although these peptides have direct and indirect effects that reduce appetite and DMI in other species (including increased insulin secretion), these may be glucose- or insulin-dependent functions, and insulin and glucose concentrations were reduced in early lactation.
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.
Resumo:
The present study reports results from two investigations to determine effects of a 6-week period of moderate n-3 fatty acid supplementation (2.7 g/d) on fasting and on postprandial triacylglycerol and metabolic hormone concentrations in response to standard test meals. In the first study postprandial responses were followed for 210 min after an early morning test meal challenge; in the second study responses to an evening test meal were followed during the evening and overnight for a total period of 12 h. In both studies postprandial triacylglycerol responses to the test meals were significantly reduced after compared with before fish-oil supplementation. In the second study the triacylglycerol peak response seen between 200 and 400 min in subjects studied before supplementation with fish oils was almost completely absent in the same subjects after 6 weeks of n-3 fatty acid supplementation. Analysis of fasting concentrations of metabolites and hormones was carried out on the combined data from the two studies. There were no significant differences in total, low-density-lipoprotein- or high-density-lipoprotein-cholesterol concentrations during fish-oil supplementation, although there was considerable individual variation in cholesterol responses to the supplement. Concentrations of Apo-B and Apo-A1 were unchanged during supplementation with fish oils. Fasting and early morning postprandial GIP concentrations were lower in subjects taking fish oils, possibly due to acute effects of fish-oil capsules taken on the evening before the studies. In both studies fasting insulin and glucose and postprandial insulin concentrations remained unchanged following fish-oil supplementation. The results do not support the view that triacylglycerol-lowering effects of n-3 fatty acids are due to modulation of insulin secretion mediated via the enteroinsular axis. Further studies are required to determine the precise mechanism by which fish oils reduce both fasting and postprandial triacylglycerol concentrations.
Resumo:
The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.
Resumo:
Objective To examine the impact of increasing numbers of metabolic syndrome (MetS) components on postprandial lipaemia. Methods Healthy men (n = 112) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min) and lunch (330 min). Lipids and glucose were measured in the fasting sample, with triacylglycerol (TAG), non-esterified fatty acids and glucose analysed in the postprandial samples. Results Subjects were grouped according to the number of MetS components regardless of the combinations of components (0/1, 2, 3 and 4/5). As expected, there was a trend for an increase in body mass index, blood pressure, fasting TAG, glucose and insulin, and a decrease in fasting high-density lipoprotein cholesterol with increasing numbers of MetS components (P≤0.0004). A similar trend was observed for the summary measures of the postprandial TAG and glucose responses. For TAG, the area under the curve (AUC) and maximum concentration (maxC) were significantly greater in men with ≥ 3 than < 3 components (P < 0.001), whereas incremental AUC was greater in those with 3 than 0/1 and 2, and 4/5 compared with 2 components (P < 0.04). For glucose, maxC after the test breakfast (0-330 min) and total AUC (0-480 min) were higher in men with ≥ 3 than < 3 components (P≤0.001). Conclusions Our data analysis has revealed a linear trend between increasing numbers of MetS components and magnitude (AUC) of the postprandial TAG and glucose responses. Furthermore, the two meal challenge discriminated a worsening of postprandial lipaemic control in subjects with ≥ 3 MetS components.
Resumo:
Abstract Objective: Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Methods: Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. Results: MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥ 5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there was a higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) was also observed in these individuals after the test meals. Multivariate regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Conclusion: Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia.
Resumo:
Given the paucity of information on the potential roles of bone morphogenetic proteins (BMPs) in the ruminant ovary we conducted immunolocalization and functional studies on cells isolated from bovine antral follicles. Immunocytochemistry revealed expression of BMP-4 and -7 in isolated theca cells whereas granulosa cells and oocytes selectively expressed RMP-6. All three cell types expressed a range of BMP-responsive type-I (BMPRIB, ActRI) and type-II (BMPRII, ActRII, ActRIIB) receptors supporting autocrine/paracrine roles within the follicle. This was reinforced by functional experiments on granulosa cells which showed that BMP-4, -6 and -7 promoted cellular accumulation of phosphorylated Smad-1 but not Smad-2 and enhanced 'basal' and IGF-stimulated secretion of oestradiol (E2), inhibin-A, activin-A and follistatin (FS). Concomitantly, each BMP suppressed 'basal' and IGF-stimulated progesterone secretion, consistent with an action to prevent or delay atresia and/or luteinization. BMPs also increased viable cell number under 'basal' (BMP-4 and -7) and IGF-stimulated (BMP-4, -6 and -7) conditions. Since FS, a product of bovine granulosa cells, has been shown to bind several BMPs, we used the Biacore technique to compare its binding affinities for activin-A (prototype FS ligand) and BMP-4, -6 and -7. Compared with activin-A (K-d 0.28 +/- 0.02 nM; 100%), the relative affinities of FS for BMP-4, -6 and -7 were 10, 5 and 1% respectively. Moreover, studies on granulosa cells showed that preincubation of ligand with excess FS abolished activin-A-induced phosphorylation of Smad-2 and BMP-4-induced phosphorylation of Smad-1. However, FS only partially reversed BMP-6-induced Smad-1 phosphorylation and had no inhibitory effect on BMP-7-induced Smad-1 phosphorylation. These findings support functional roles for BMP-4, -6 and -7 as paracrine/autocrine modulators of granulosa cell steroidogenesis, peptide secretion and proliferation in bovine antral follicles. The finding that FS can differentially modulate BMP-induced receptor activation and that this correlates with the relative binding affinity of FS for each BMP type implicates FS as a potential modulator of BMP action in the ovary.