15 resultados para Glucose-stimulated beta-glycosidase

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The platelet surface is a dynamic interface that changes rapidly in response to stimuli to coordinate the formation of thrombi at sites of vascular injury. Tight control is essential as loss of organisation may result in the inappropriate formation of thrombi (thrombosis) or excessive bleeding. In this paper we describe the comparative analysis of resting and thrombin-stimulated platelet membrane proteomes and associated proteins to identify proteins important to platelet function. Surface proteins were labelled using a biotin tag and isolated by NeurtrAvidin affinity chromatography. Liquid phase IEF and SDS-PAGE were used to separate proteins, and bands of increased intensity in the stimulated platelet fractions were digested and identified by FT-ICR mass spectrometry. Novel proteins were identified along with proteins known to be translocated to the platelet surface. Furthermore, many platelet proteins revealed changes in location associated with function, including G6B and Hip-55. HIP-55 is an SH3-binding protein important in T-cell receptor signalling. Further analysis of HIP-55 revealed that this adaptor protein becomes increasingly associated with both Syk and integrin beta 3 upon platelet activation. Analysis of HIP-55 deficient platelets revealed reduced fibrinogen binding upon thrombin stimulation, suggesting HIP-55 to be an important regulator of platelet function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less Susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression From both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the Cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Activation of the platelet integrin alpha(2)beta(1) is closely regulated due to the high thrombogenicity of its ligand. As a beta(1) interacting kinase, ILK represents a candidate intracellular regulator of alpha(2)beta(1) in human platelets. Objectives We investigated the regulation of ILK in human platelets and the role of ILK in regulating alpha(2)beta(1) activation in HEL cells, a megakaryocytic cell line. Methods: An in-vitro kinase assay was used to determine the effect of platelet agonists on ILK kinase activity together with the contribution of PI3K and PKC on ILK activation. Interaction of ILK with beta(1)-integrin subunits was investigated by coimmunoprecipitation and the role of ILK in regulating alpha(2)beta(1) function assessed by overexpression studies in HEL cells. Results: We report that collagen and thrombin modulate ILK kinase activity in human platelets in an aggregation-independent manner. Furthermore, ILK activity is dually regulated by PI3K and PKC in thrombin-stimulated platelets and regulated by PI3K in collagen-stimulated cells. ILK associates with the beta(1)-integrin subunits immunoprecipitated from platelet cell lysates, an association which increased upon collagen stimulation. Overexpression of ILK in HEL cells enhanced alpha(2)beta(1)-mediated adhesion whereas overexpression of kinase-dead ILK reduced adhesion, indicating a role for this kinase in the positive regulation of alpha(2)beta(1). Conclusions: Our findings that ILK regulates alpha(2)beta(1) in HEL cells, is activated in platelets and associates with beta(1)-integrins, raise the possibility that it may play a key role in adhesion events upon agonist stimulation of platelets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The key intermediate 1,2:5,6-di-O-isopropylidene-3-deoxy-3 beta-allyl-alpha-D-glucofuranose (8) could be conveniently prepared through radical induced allyl substitution at C-3 of appropriate 1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose derivatives (7a,b) and used to synthesize enantiomeric bishydroxymethyl aminocyclopentanols 13 and 19 by the application of a 1,3-dipolar nitrone cycloaddition reaction involving the C-5 or C-1 aldehyde functionality. The products were subsequently transformed into carbanucleoside enantiomers 15 and 21. The diastercomeric isoxazolidinocyclopentane derivative 20 was similarly converted to carbanucleoside 22. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with two aspects tightly related to the enzymatic characteristics and expression of four beta-galactosidases (BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171. The growth patterns of this strain indicated a preference towards complex (i.e. lactose, galactooligosaccharides (GOSs)) rather than simple carbohydrates (i.e. glucose and galactose) and a collaborative action and synergistic relation of more than one beta-galactosidase isoenzyme for either lactose or GOS hydrolysis and subsequent assimilation. Native polyacrylamide gel electrophoresis analysis of protein extracts from cells growing on different carbohydrates (i.e. glucose, lactose or GOS) indicated that two lactose hydrolysing enzymes (BbgI and BbgIII) and one GOS hydrolysing enzyme (BbgII) were constitutively expressed, whereas a fourth lactose hydrolysing enzyme (BbgIV) was induced in the presence of lactose or different GOS fractions. Furthermore, the beta-galactosidase expression profiles of B. bifidum cells and the transgalactosylating properties of each individual isoenzyme, with lactose as substrate, clearly indicated that mainly three isoenzymes (BbgI, BbgIII and BbgIV) are implicated in GOS synthesis when whole B. bifidum cells are utilised. Two of the isoenzymes (BbgI and BbgIV) proved to have better transgalactosylating properties giving yields ranging from 42% to 47% whereas the rest (BbgI and BbgIII) showed lower yields (15% and 29%, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of prebiotic alpha- and beta-galactooligosaccharides (GOS) using the whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated. Determination of alpha- and beta-galactosidase activities showed them to be at 3 and 205 g(-1) of freeze dried biomass, respectively, and they increased to 5 and 344 U g(-1), respectively, when cells were treated with toluene. Starting with 450-500 mg mL(-1) lactose, maximum GOS concentrations were observed at 80-85% lactose conversions and the mixtures contained oligosaccharides (with a degree of polymerisation >= 3) at 77-109 mg mL(-1) and trans-galactosylated disaccharides between 85-115 mg mL(-1). The GOS yield values varied between 36% and 43%. An alpha-linked disaccharide was detected and its presence was confirmed by gas chromatography mass spectroscopy. Cells were re-used up to 8 times without changes in reaction times or the substrate conversions to GOS. Oligosaccharide synthesis was not inhibited by the presence of glucose or galactose. The mixtures were successfully purified from glucose (92% of glucose removed) by fermentation with Saccharomyces cerevisiae with no losses in the oligosaccharide content and only a small decrease on the galactose. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologous desensitization of beta(2)-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein-coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestins to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization via clathrin-coated pits, and the initiation of alternative signaling pathways. In this study we have investigated the interactions between receptors and beta-arrestin2 in living cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin2 binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation; (b) repeated stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin2 very rapidly; and (c) the interaction of beta-arrestin2 with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to swift dissociation of the receptor-beta-arrestin2 complex. This fast agonist-controlled association and dissociation of beta-arrestins from prephosphorylated receptors should permit rapid control of receptor sensitivity in repeatedly stimulated cells such as neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In 1997, the US Food and Drug Administration passed a unique ruling that allowed oat bran to be registered as the first cholesterol-reducing food at a dosage of 3 g beta-glucan/d. OBJECTIVE: The effects of a low dose of oat bran in the background diet only were investigated in volunteers with mild-to-moderate hyperlipidemia. DESIGN: The study was a double-blind, placebo-controlled, randomized, parallel study. Sixty-two healthy men (n = 31) and women (n = 31) were randomly allocated to consume either 20 g oat bran concentrate (OBC; containing 3 g beta-glucan) or 20 g wheat bran (control) daily for 8 wk. Fasting blood samples were collected at weeks -1, 0, 4, 8, and 12. A subgroup (n = 17) was studied postprandially after consumption of 2 meals (containing no OBC or wheat bran) at baseline and after supplementation. Fasting plasma samples were analyzed for total cholesterol, HDL cholesterol, triacylglycerol, glucose, and insulin. LDL cholesterol was measured by using the Friedewald formula. The postprandial samples were anlayzed for triacylglycerol, glucose, and insulin. RESULTS: No significant difference was observed in fasting plasma cholesterol, LDL cholesterol, glucose, or insulin between the OBC and wheat-bran groups. HDL-cholesterol concentrations fell significantly from weeks 0 to 8 in the OBC group (P = 0.05). There was a significant increase in fasting glucose concentrations after both OBC (P = 0.03) and wheat-bran (P = 0.02) consumption. No significant difference was found between the OBC and wheat-bran groups in any of the postprandial variables measured. CONCLUSIONS: A low dosage of beta-glucan (3 g/d) did not significantly reduce total cholesterol or LDL cholesterol in volunteers with plasma cholesterol concentrations representative of a middle-aged UK population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the ‘Reading, Imperial, Surrey, Cambridge, and Kings’ (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10−4 mL µU min)2, p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT–acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)2, p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by ‘normal’ lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under non-aseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% (w/v). However, 4.0% (w/v) of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% (w/w) per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% (w/w) of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value amongst the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for “second generation” biodiesel