2 resultados para Glucokinase (GCK)

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The canonical pathway of regulation of the germinal centre kinase (GCK) III subgroup member, mammalian Sterile20-related kinase 3 (MST3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178-), induction of Ser-/Thr-protein kinase activity and nuclear localisation. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein, GOLGA2/gm130. Activation of MST3 by calyculin A (a protein Ser-/Thr- phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178-) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328-) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr178-) phosphorylation increased MST3 kinase activity but this activity was independent of MST3(Thr328-) phosphorylation. Interestingly, MST3(Thr328-) lies immediately C-terminal to a STRAD pseudokinase-like site recently identified as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178- /Thr328-) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328-) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.