61 resultados para Global environmental awareness,

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction to a special issue on migration and global environmental change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a presentday direct aerosol forcing of −0.49Wm−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17Wm−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of societal transformation in response to environmental change has become established, yet little consensus exists regarding the conceptual basis of transformation. This paper aims to provide structure to the dialog on transformation, and to reflect on the challenges of social research in this area. Concepts of transformation are identified through a literature review, and examined using four analytical criteria. It is found that the term ‘transformation’ is frequently used merely as a metaphor. When transformation is not used as a metaphor, eight concepts are most frequently employed. They differ with respect to (i) system conceptualization, (ii) notions of social consciousness (deliberate/emergent), and (iii) outcome (prescriptive/descriptive). Problem-based research tends to adopt concepts of deliberate transformation with prescriptive outcome, while concepts of emergent transformation with no prescriptive outcome tend to inform descriptive-analytical research. Dialog around the complementarities of different concepts and their empirical testing are priorities for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a vertically differentiated market, assuming that conventional and green firms' products have different impacts on the environment. Heterogeneous consumers choose to be supplied by a conventional or a green firm, depending on their extra willingness to pay for a green product and the relative prices of the products in the market. We show that environmental awareness campaigns may have a negative impact on total welfare. This possibility is shown to exist without consumer misperceptions about the quality of green products and ruling out changes in the coverage and the structure of the market. Surprisingly, both conventional and green firms may benefit from heterogeneity-enhancing awareness campaigns, while social welfare is more likely to be enhanced by heterogeneity-reducing ones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a model that allows players in the building and construction sector and the energy policy makers on energy strategies to be able to perceive the interest of investors in the kingdom of Bahrain in conducting Building Integrated Photovoltaic (BIPV) or Building integrated wind turbines (BIWT) projects, i.e. a partial sustainable or green buildings. The model allows the calculation of the Sustainable building index (SBI), which ranges from 0.1 (lowest) to 1.0 (highest); the higher figure the more chance for launching BIPV or BIWT. This model was tested in Bahrain and the calculated SBI was found 0.47. This means that an extensive effort must be made through policies on renewable energy, renewable energy education, and incentives to BIPV and BIWT projects, environmental awareness and promotion to clean and sustainable energy for building and construction projects. Our model can be used internationally to create a "Global SBI" database. The Sustainable building and construction initiative (SBCI), United Nation, can take the task for establishing such task using this model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4oC by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450ppm CO2e and leads to a 2oC increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of the environment and environmental change is largely unrepresented in standard theories of migration, whilst recent debates on climate change and migration focus almost entirely on displacement and perceive migration to be a problem. Drawing on an increasing evidence base that has assessed elements of the influence of the environment on migration, this paper presents a new framework for understanding the effect of environmental change on migration. The framework identifies five families of drivers which affect migration decisions: economic, political, social, demographic and environmental drivers. The environment drives migration through mechanisms characterised as the availability and reliability of ecosystem services and exposure to hazard. Individual migration decisions and flows are affected by these drivers operating in combination, and the effect of the environment is therefore highly dependent on economic, political, social and demographic context. Environmental change has the potential to affect directly the hazardousness of place. Environmental change also affects migration indirectly, in particular through economic drivers, by changing livelihoods for example, and political drivers, through affecting conflicts over resources, for example. The proposed framework, applicable to both international and internal migration, emphasises the role of human agency in migration decisions, in particular the linked role of family and household characteristics on the one hand, and barriers and facilitators to movement on the other in translating drivers into actions. The framework can be used to guide new research, assist with the evaluation of policy options, and provide a context for the development of scenarios representing a range of plausible migration futures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to run General Circulation Models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model (HadGEM1), with horizontal resolution increasing from approximately 270km to 60km (at 50N), is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity and low-level absolute vorticity are dominant, while in the North Pacific basins mid-level relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behaviour, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.