79 resultados para Global and Nonglobal Solutions

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0-an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores the implications of an organization moving toward service-dominant logic (S-D logic) on the sales function. Driven by its customers’ needs, a service orientation by its nature requires personal interaction and sales personnel are in an ideal position to develop offerings with the customer. However, the development of S-D logic may require sales staff to develop additional skills. Employing a single case study, the study identified that sales personnel are quick to appreciate the advantages of S-D logic for customer satisfaction and six specific skills were highlighted and explored. Further, three propositions were identified: in an organization adopting S-D logic, the sales process needs to elicit needs at both embedded-value and value-in-use levels. In addition, the sales process needs to coproduce not just goods and service attributes but also attributes of the customer’s usage processes. Further, the sales process needs to coproduce not just goods and service attributes but also attributes of the customer’s usage processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palaeoproxy records alone are seldom sufficient to provide a full assessment of regional palaeoclimates. To better understand the possible changes in the Mediterranean climate during the Holocene, a series of palaeoclimate integrations for periods spanning the last 12 000 years have been performed and their results diagnosed. These simulations use the HadSM3 global climate model, which is then dynamically downscaled to approximately 50 km using a consistent regional climate model (HadRM3). Changes in the model’s seasonal-mean surface air temperatures and precipitation are discussed at both global and regional scales, along with the physical mechanisms underlying the changes. It is shown that the global model reproduces many of the large-scale features of the mid-Holocene climate (consistent with previous studies) and that the results suggest that many areas within the Mediterranean region were wetter during winter with a stronger seasonal cycle of surface air temperatures during the early Holocene. This precipitation signal in the regional model is strongest in the in the northeast Mediterranean (near Turkey), consistent with low-level wind patterns and earlier palaeosyntheses. It is, however, suggested that further work is required to fully understand the changes in the winter circulation patterns over the Mediterranean region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990-2090 it amounts to 0.20-0.37 in. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea- level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature relevant to how solar variability influences climate is vast—but much has been based on inadequate statistics and non-robust procedures. The common pitfalls are outlined in this review. The best estimates of the solar influence on the global mean air surface temperature show relatively small effects, compared with the response to anthropogenic changes (and broadly in line with their respective radiative forcings). However, the situation is more interesting when one looks at regional and season variations around the global means. In particular, recent research indicates that winters in Eurasia may have some dependence on the Sun, with more cold winters occurring when the solar activity is low. Advances in modelling ‘‘top-down’’ mechanisms, whereby stratospheric changes influence the underlying troposphere, offer promising explanations of the observed phenomena. In contrast, the suggested modulation of low-altitude clouds by galactic cosmic rays provides an increasingly inadequate explanation of observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much is known about the functional mechanisms involved in visual search. Yet, the fundamental question of whether the visual system can perform different types of visual analysis at different spatial resolutions still remains unsettled. In the visual-attention literature, the distinction between different spatial scales of visual processing corresponds to the distinction between distributed and focused attention. Some authors have argued that singleton detection can be performed in distributed attention, whereas others suggest that even such a simple visual operation involves focused attention. Here we showed that microsaccades were spatially biased during singleton discrimination but not during singleton detection. The results provide support to the hypothesis that some coarse visual analysis can be performed in a distributed attention mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using radiative forcing from the task force on hemispheric transport of air pollution source-receptor global chemical transport model simulations. These simulations model the transport of 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, nitric oxides (NOx), volatile organic compounds and carbon monoxide). From the equilibrium radiative forcing results we calculate global climate metrics, global warming potentials (GWPs) and global temperature change potentials (GTPs) and show how these depend on emission region, and can vary as functions of time. For the aerosol species, the GWP(100) values are −37±12, −46±20, and 350±200 for SO2, POM and BC respectively for the direct effects only. The corresponding GTP(100) values are −5.2±2.4, −6.5±3.5, and 50±33. This analysis is further extended by examining the temperature-change impacts in 4 latitude bands. This shows that the latitudinal pattern of the temperature response to emissions of the NTCFs does not directly follow the pattern of the diagnosed radiative forcing. For instance temperatures in the Arctic latitudes are particularly sensitive to NTCF emissions in the northern mid-latitudes. At the 100-yr time horizon the ARTPs show NOx emissions can have a warming effect in the northern mid and high latitudes, but cooling in the tropics and Southern Hemisphere. The northern mid-latitude temperature response to northern mid-latitude emissions of most NTCFs is approximately twice as large as would be implied by the global average.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.