85 resultados para Global Carbon Integrity

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global agreements have proliferated in the past ten years. One of these is the Kyoto Protocol, which contains provisions for emissions reductions by trading carbon through the Clean Development Mechanism (CDM). The CDM is a market-based instrument that allows companies in Annex I countries to offset their greenhouse gas emissions through energy and tree offset projects in the global South. I set out to examine the governance challenges posed by the institutional design of carbon sequestration projects under the CDM. I examine three global narratives associated with the design of CDM forest projects, specifically North – South knowledge politics, green developmentalism, and community participation, and subsequently assess how these narratives match with local practices in two projects in Latin America. Findings suggest that governance problems are operating at multiple levels and that the rhetoric of global carbon actors often asserts these schemes in one light, while the rhetoric of those who are immediately involved locally may be different. I also stress the alarmist’s discourse that blames local people for the problems of environmental change. The case studies illustrate the need for vertical communication and interaction and nested governance arrangements as well as horizontal arrangements. I conclude that the global framing of forests as offsets requires better integration of local relationships to forests and their management and more effective institutions at multiple levels to link the very local to the very large scale when dealing with carbon sequestration in the CDM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958–2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of managing land to optimise carbon sequestration for climate change mitigation is widely recognised, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grasslands soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in sub-surface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30cm. Total stocks of soil carbon (t ha-1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha-1 in surface soils (0-30 cm), and 13.7 t ha-1 in soils from 30-100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This introductory chapter sets the scene for the book, providing an overview of sustainability in the built environment. With a bias towards buildings and the urban environment, it illustrates the range of issues that impinge upon global carbon reduction and the mechanisms available to help bring about change. Climate change, and its impact on built environment, is briefly introduced and sustainability in the built environment and associated factors are described. The specific topics relating to sustainable design and management of the built environment, including policy and assessment, planning, energy, water and waste, technology, supply and demand, occupants’ behaviour and management have been highlighted. This chapter emphasises the importance of a systemic approach in delivering a sustainable built environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cities are responsible for up to 70% of global carbon emissions and 75% of global energy consumption. By 2050 it is estimated that 70% of the world's population will live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city-regions (i.e. the city and its wider hinterland) to re-engineer systemically their built environment and urban infrastructure in response to climate change and resource constraints. To inform transitions to urban sustainability, key stakeholders' perceptions were sought though a participatory backcasting and scenario foresight process in order to illuminate challenging but realistic socio-technical scenarios for the systemic retrofit of core UK city-regions. The challenge of conceptualizing complex urban transitions is explored across multiple socio-technical ‘regimes’ (housing, non-domestic buildings, urban infrastructure), scales (building, neighbourhood, city-region), and domains (energy, water, use of resources) within a participatory process. The development of three archetypal ‘guiding visions’ of retrofit city-regional futures developed through this process are discussed, along with the contribution that such foresight processes might play in ‘opening up’ the governance and strategic navigation of urban sustainability.