51 resultados para Geometry of numbers

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a combined quantitative low-energy electron diffraction (LEED) and density-functional theory (DFT) study of the chiral Cu{531} surface. The surface shows large inward relaxations with respect to the bulk interlayer distance of the first two layers and a large expansion of the distance between the fourth and fifth layers. (The latter is the first layer having the same coordination as the Cu atoms in the bulk.) Additional calculations have been performed to study the likelihood of faceting by comparing surface energies of possible facet terminations. No overall significant reduction in energy with respect to planar {531} could be found for any of the tested combinations of facets, which is in agreement with the experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 x 2)-S and c(2 x 2)-S surface structures formed by exposing the (1 x 1) phase of Ir{100} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 x 2)-S and 0.16 for the c(2 x 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 +/- 0.01 angstrom and 3.33 +/- 0.01 angstrom, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{100} transition metal surfaces: 0.09 angstrom for p(2 x 2)-S and 0.02 angstrom for c(2 x 2)-S structures. The (1 x 5) reconstruction, which is the most stable phase for clean Ir{100}, is completely lifted and a c(2 x 2)-S overlayer is formed after exposure to H,S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of photoelectron spectroscopy, temperature programmed desorption and low energy electron diffraction structure determinations have been applied to study the p(2 x 2) structures of pure hydrogen and co-adsorbed hydrogen and CO on Ni {111}. In agreement with earlier work atomic hydrogen is found to adsorb on fcc and hcp sites in the pure layer with H-Ni bond lengths of 1.74Angstrom. The substrate interlayer distances, d(12) = 2.05Angstrom and d(23) = 2.06Angstrom, are expanded with respect to clean Ni {111} with buckling of 0.04Angstrom in the first layer. In the co-adsorbed phase Co occupies hcp sites and only the hydrogen atoms on fcc sites remain on the surface. d(12) is even further expanded to 2.08Angstrom with buckling in the first and second layer of 0.06 and 0.02Angstrom, respectively. The C-O, C-Ni, and H-Ni bond lengths are within the range of values also found for the pure adsorbates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although numerous field studies have evaluated flow and transport processes in salt marsh channels, the overall role of channels in delivering and removing material from salt marsh platforms is still poorly characterised. In this paper, we consider this issue based on a numerical hydrodynamic model for a prototype marsh system and on a field survey of the cross-sectional geometry of a marsh channel network. Results of the numerical simulations indicate that the channel transfers approximately three times the volume of water that would be estimated from mass balance considerations alone. Marsh platform roughness exerts a significant influence on the partitioning of discharge between the channel and the marsh platform edge, alters flow patterns on the marsh platform due to its effects on channel-to-platform transfer and also controls the timing of peak discharge relative to marsh-edge overtopping. Although peak channel discharges and velocities are associated with the flood tide and marsh inundation, a larger volume of water is transferred by the channel during ebb flows, a portion of which transfer takes place after the tidal height is below the marsh platform. Detailed surveys of the marsh channels crossing a series of transects at Upper Stiffkey Marsh, north Norfolk, England, show that the total channel cross-sectional area increases linearly with catchment area in the inner part of the marsh, which is consistent with the increase in shoreward tidal prism removed by the channels. Toward the marsh edge, however, a deficit in the total cross-sectional area develops, suggesting that discharge partitioning between the marsh channels and the marsh platform edge may also be expressed in the morphology of marsh channel systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presently available microwave, millimeter wave, and far-infrared data of five isotopic species of isocyanic acid, namely, HNCO, H15NCO, HN13CO, HNC18O, and DNCO, have been used to obtain improved values of the ground-state rotational constants, the five quartic distortion constants, and some higher-order distortion constants in the Ir S reduced Hamiltonian of Watson. The appropriate planarity relation among the quartic centrifugal distortion constants has been imposed in the fitting procedure. The general harmonic force field of isocyanic acid has been determined using all existing data, and assuming a trans bent equilibrium geometry of the molecule with an NCO angle of 170°. Finally an rz structure has been obtained using the Az, Bz, and Cz rotational constants of five isotopic species. The bending of the NCO chain is found to be 8° in the trans configuration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most suspension-feeding trichopterans spin a fine-silk capture net that is used to remove suspended matter from the water. The efficiency of these nets has previously been studied by considering the geometry of the web structure but the material from which the nets is constructed has received little attention. We report measurements of the tensile strength and extensibility of net silk from Hydropsyche siltalai. These measurements place caddisfly silk as one of the weakest natural silks so far reported, with a mean tensile strength of 221 +/- 22 megaNewtons (MN)/m(2). We also show that H. siltalai silk can more than double in length before catastrophic breakage, and that the silk is at least 2 orders of magnitude stronger than the maximum force estimated to act upon it in situ. Possible reasons for this disparity include constraints of evolutionary history and safety margins to prevent net failure or performance reduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)(2)][Cu(bipy)(L-glu)H2O](2)(BF4)(4)center dot(H2O)(3)}(n) (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)]( ClO4)center dot(H2O)(2)}(n) ((2)) and [Cu(phen)(L-glu)H2O](2)(NO3)(2)center dot(H2O)(4) (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally. In all the complexes, L-glutamic acid acts as a bidentate chelating ligand, leaving the protonated carboxylic acid free. Both in 1 and 2, two different types of species [Cu(bipy)(2)](BF4)(2) and [Cu(bipy)(L-glu)H2O] BF4 for 1 and [Cu(bipy)(L-glu)H2O]ClO4 and [Cu(bipy)(L-glu)(ClO4)] for 2 coexist in the solid state. In complex 1, the [C( bipy)(L-glu)H2O]+ units are joined together by syn-anti carboxylate bridges to form an enantiopure (M) helical chain and the [Cu(bipy)(2)](2+) presents a very rare example of the four-coordinate distorted tetrahedral geometry of Cu(II). In complex 2, the [Cu(bipy)(L gluClO(4))] units are joined together by weakly coordinating perchlorate ions to form a 1D polymeric chain while the [Cu(bipy)(L-glu)H2O]+ units remain as mononuclear species. The different coordinating ability of the two counter anions along with their involvement in the H-bonding network seems likely to be responsible for the difference in the final polymeric structures in the two compounds. Variable-temperature (2-300 K) magnetic susceptibility measurements show negligible coupling for both the complexes. The structure of 3 consists of two independent monomeric [Cu(phen)(L-glu)H2O]+ cations, two nitrate anions and four water molecules. The copper atom occupies a five-coordinate square pyramidal environment with a water molecule in the axial position.