5 resultados para Geometry, Non-Euclidian
em CentAUR: Central Archive University of Reading - UK
Resumo:
An algorithm based on flux difference splitting is presented for the solution of two-dimensional, open channel flows. A transformation maps a non-rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalized coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body-fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
This topical review discusses the influence of the surface geometry (e.g. lattice parameters and termination) and electronic structure of well-defined bimetallic surfaces on the adsorption and dissociation of benzene. The available data can be divided into two categories with combinations of non-transition metals and transition metals on the one side and combinations of two transition metals on the other. The main effect of non-transition metals in surface alloys is site blocking which can suppress chemisorption and dissociation of the molecules completely. When two transition metals are combined, the effects are less dramatic. They mainly affect the strength of the chemisorption bond and the degree of dissociation due to electronic and template effects.
Resumo:
Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.