9 resultados para Geology, Stratigraphic -- Carboniferous
em CentAUR: Central Archive University of Reading - UK
Resumo:
The improved empirical understanding of silt facies in Holocene coastal sequences provided by such as diatom, foraminifera, ostracode and testate amoebae analysis, combined with insights from quantitative stratigraphic and hydraulic simulations, has led to an inclusive, integrated model for the palaeogeomorphology, stratigraphy, lithofacies and biofacies of northwest European Holocene coastal lowlands in relation to sea-level behaviour. The model covers two general circumstances and is empirically supported by a range of field studies in the Holocene deposits of a number of British estuaries, particularly, the Severn. Where deposition was continuous over periods of centuries to millennia, and sea level fluctuated about a rising trend, the succession consists of repeated cycles of silt and peat lithofacies and biofacies in which series of transgressive overlaps (submergence sequences) alternate with series of regressive overlaps (emergence sequences) in association with the waxing and waning of tidal creek networks. Environmental and sea-level change are closely coupled, and equilibrium and secular pattern is of the kind represented ideally by a closed limit cycle. In the second circumstance, characteristic of unstable wetland shores and generally affecting smaller areas, coastal erosion ensures that episodes of deposition in the high intertidal zone last no more than a few centuries. The typical response is a series of regressive overlaps (emergence sequence) in erosively based high mudflat and salt-marsh silts that record, commonly as annual banding, exceptionally high deposition rates and a state of strong disequilibrium. Environmental change, including creek development, and sea-level movement are uncoupled. Only if deposition proceeds for a sufficiently long period, so that marshes mature, are equilibrium and close coupling regained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new genus Ibergirhynchia, a member of the rhynchonellide superfamily Dimerelloidea, is described for the species Terebratula contraria Roemer, 1850, from Early Carboniferous deposits of the Harz Mountains, Germany. Ibergirhynchia contraria is from a monospecific brachiopod limestone that formed on top of the drowned Devonian Iberg Reef which persisted as a seamount during Famennian and Early Carboniferous times. Ibergirhynchia contraria is considered a cold seep-related brachiopod based on this locality. Such seep associations have been observed for Mesozoic representatives of the rhynchonellide superfamily Dimerelloidea. Ibergirhynchia is considered the first Paleozoic representative of the family Rhynchonellinidae. Ibergirhynchia resembles Dzieduszyckia externally and may be derived from this dimerelloid.
Resumo:
The building fabrics of seven churches situated either on Romney Marsh or the marshland fringe were examined briefly. These revealed important differences in the relative abundance of the two principal building stones. Ragstones from the Hythe Formation occurred more frequently in the northeast, while sandstones from the Ashdown 'Beds' were more common in the west. In the Romney Marsh area, both stones were quarried mainly from their adjoining coastlines, with, up to the thirteenth century, opportunist collection of beach boulders generally preceding the exploitation or hewn stone. Other building stones, possible distribution routes and impacts of the quarrying upon coastline development were also discussed.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
The first large-scale archaeobotanical study in Britain, conducted from 1899 to 1909 by Clement Reid and Arthur Lyell at Silchester, provided the first evidence for the introduction of Roman plant foods to Britain, yet the findings have thus far remained unverified. This paper presents a reassessment of these archaeobotanical remains, now stored as part of the Silchester Collection in Reading Museum. The documentary evidence for the Silchester study is summarised, before the results are presented for over a 1000 plant remains including an assessment of preservation, identification and modern contamination. The dataset includes both evidence for the presence of nationally rare plant foods, such as medlar, and several archaeophytes. The methodologies and original interpretations of Reid and Lyell’s study are reassessed in light of current archaeobotanical knowledge. Spatial and contextual patterns in the distribution of plant foods and ornamental taxa are also explored. Finally, the legacy of the study for the development of archaeobotany in the 20th century is evaluated.