3 resultados para Geodesy

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising sea level is perhaps the most severe consequence of climate warming, as much of the world’s population and infrastructure is located near current sea level (Lemke et al. 2007). A major rise of a metre or more would cause serious problems. Such possibilities have been suggested by Hansen and Sato (2011) who pointed out that sea level was several metres higher than now during the Holsteinian and Eemian interglacials (about 250,000 and 120,000 years ago, respectively), even though the global temperature was then only slightly higher than it is nowadays. It is consequently of the utmost importance to determine whether such a sea level rise could occur and, if so, how fast it might happen. Sea level undergoes considerable changes due to natural processes such as the wind, ocean currents and tidal motions. On longer time scales, the sea level is influenced by steric effects (sea water expansion caused by temperature and salinity changes of the ocean) and by eustatic effects caused by changes in ocean mass. Changes in the Earth’s cryosphere, such as the retreat or expansion of glaciers and land ice areas, have been the dominant cause of sea level change during the Earth’s recent history. During the glacial cycles of the last million years, the sea level varied by a large amount, of the order of 100 m. If the Earth’s cryosphere were to disappear completely, the sea level would rise by some 65 m. The scientific papers in the present volume address the different aspects of the Earth’s cryosphere and how the different changes in the cryosphere affect sea level change. It represents the outcome of the first workshop held within the new ISSI Earth Science Programme. The workshop took place from 22 to 26 March, 2010, in Bern, Switzerland, with the objective of providing an in-depth insight into the future of mountain glaciers and the large land ice areas of Antarctica and Greenland, which are exposed to natural and anthropogenic climate influences, and their effects on sea level change. The participants of the workshop are experts in different fields including meteorology, climatology, oceanography, glaciology and geodesy; they use advanced space-based observational studies and state-of-the-art numerical modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable efforts are currently invested into the setup of a Global Climate Observing System (GCOS) for monitoring climate change over the coming decades, which is of high relevance given concerns on increasing human influences. A promising potential contribution to the GCOS is a suite of spaceborne Global Navigation Satellite System (GNSS) occultation sensors for global long-term monitoring of atmospheric change in temperature and other variables with high vertical resolution and accuracy. Besides the great importance with respect to climate change, the provision of high quality data is essential for the improvement of numerical weather prediction and for reanalysis efforts. We review the significance of GNSS radio occultation sounding in the climate observations context. In order to investigate the climate change detection capability of GNSS occultation sensors, we are currently performing an end-to-end GNSS occultation observing system simulation experiment over the 25-year period 2001 to 2025. We report on this integrated analysis, which involves in a realistic manner all aspects from modeling the atmosphere via generating a significant set of stimulated measurements to an objective statistical analysis and assessment of 2001–2025 temporal trends.