3 resultados para Geochemical Evidence

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silchester is the site of a major late Iron Age and Roman town (Calleva Atrebatum), situated in northern Hampshire (England (UK)) and occupied between the late first century BC and the fifth or sixth century AD. Extensive evidence of the nature of the buildings and the plan of the town was obtained from excavations undertaken between 1890 and 1909. The purpose of this study was to use soil geochemical analyses to reinforce the archaeological evidence particularly with reference to potential metal working at the site. Soil analysis has been used previously to distinguish different functions or land use activity over a site and to aid identification and interpretation of settlement features (Entwistle et al., 2000). Samples were taken from two areas of the excavation on a 1-metre grid. Firstly from an area of some 500 square metres from contexts of late first/early second century AD date throughout the entirety of a large 'town house' (House 1) from which there was prima facie evidence of metalworking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral and geochemical investigations were carried out on soil samples and fresh rock (trachytes) from two selected soil profiles (TM profile on leptic aluandic soils and TL profile on thapto aluandic-ferralsols) from Mount Bambouto to better understand geochemical processes and mineral paragenesis involved in the development of soils in this environment. In TM profile, the hydrated halloysites and goethite occur in the weathered saprolite boulders of BC horizon while dehydrated halloysite, gibbsite and goethite dominate the soils matrices of BC and A horizons. In TL profile, the dehydrated halloysites and goethite are the most abundant secondary minerals in the weathered saprolites of C and BC horizons while gibbsite, hematite and kaolinite occur in the soil matrices of BC, B and A horizons. The highest gibbsite content is in the platy nodules of B horizon. In both soil profiles, organo-metal complexes (most likely of AI and Fe) are present in the surface A horizon. Geochemically, between the fresh rock and the weathered saprolites in both soils, SiO2, K2O, CaO, Na2O and MgO contents decrease strongly while Fe2O3 and Al2O3 tend to accumulate. The molar ratio of SiO2/Al2O3 (Ki) and the sum of Ca, Mg, K and Na ions (TRB) also decreases abruptly between fresh rocks and the weathered saprolites, but increases significantly at the soil surface. The TM profile shows intense Al enrichment whereas the TL profile highlights enrichment in both AI and Fe as the weathering progresses upwards. Both soil profiles are enriched in Ni, Cu, Ba and Co and depleted in U, Th, Ta, Hf, Y, Sr, Pb, Zr and Zn relative to fresh rock. They also show a relatively low fractionation of the rare earth elements (REE: La, Nd, Sm, Eu, Tb, Yb and Lu), except for Ce which tends to be enriched in soils compared to CI chondrite. All these results give evidence of intense hydrolysis at soil deep in Mount Bambouto resulting in the formation of halloysite which progressively transforms into gibbsite and/or dehydrated halloysite. At the soil surface, the prominent pedogenetic process refers to andosolization with formation of organo-metal complexes. In TL profile, the presence of kaolinite in soil matrices BC and B horizons is consistent with ferralitization at soil deep. In conclusion, soil forming processes in Mount Bambouto are strongly influenced by local climate: (i) in the upper mountain (>2000 m), the fresh, misty and humid climate favors andosolization; whereas (ii) in the middle lands (1700-2000 m) with a relatively dry climate, both andosolization at the soil surface and ferralitization at soil deep act together. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20 year ocean state estimate produced with the ECCO v4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century long simulations, both for assimilated variables (temperature and salinity) and independent variables (bio-geochemical tracers). Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper ocean ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rates. Uncertainties and further improvements of the method are discussed.