6 resultados para Genetic code
em CentAUR: Central Archive University of Reading - UK
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.
Resumo:
Alterations to the genetic code – codon reassignments – have occurred many times in life’s history, despite the fact that genomes are coadapted to their genetic codes and therefore alterations are likely to be maladaptive. A potential mechanism for adaptive codon reassignment, which could trigger either a temporary period of codon ambiguity or a permanent genetic code change, is the reactivation of a pseudogene by a nonsense suppressor mutant transfer RNA. I examine the population genetics of each stage of this process and find that pseudogene rescue is plausible and also readily explains some features of extant variability in genetic codes.
Resumo:
Background Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature. Results In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences. Conclusions We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants.
Resumo:
Purpose Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans. Methods Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min. Results For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found. Conclusions In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.
Resumo:
The paper presents a design for a hardware genetic algorithm which uses a pipeline of systolic arrays. These arrays have been designed using systolic synthesis techniques which involve expressing the algorithm as a set of uniform recurrence relations. The final design divorces the fitness function evaluation from the hardware and can process chromosomes of different lengths, giving the design a generic quality. The paper demonstrates the design methodology by progressively re-writing a simple genetic algorithm, expressed in C code, into a form from which systolic structures can be deduced. This paper extends previous work by introducing a simplification to a previous systolic design for the genetic algorithm. The simplification results in the removal of 2N 2 + 4N cells and reduces the time complexity by 3N + 1 cycles.