100 resultados para Generalized Riemann-Liouville Fractional Derivative

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling toot for simulating the time-dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in-stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in-stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l(-1). The general trends in the in-stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l(-1)) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in-stream generation, storage and release of the fine sediment fraction. The in-stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.

Relevância:

20.00% 20.00%

Publicador: