36 resultados para Generalist and specialists
em CentAUR: Central Archive University of Reading - UK
Resumo:
Increased risks of extinction to populations of animals and plants under changing climate have now been demonstrated for many taxa. This study assesses the extinction risks to species within an important genus of pollinating bees (Colletes: Apidae) by estimating the expected changes in the area and isolation of suitable habitat under predicted climatic condition for 2050. Suitable habitat was defined on the basis of the presence of known forage plants as well as climatic suitability. To investigate whether ecological specialisation was linked to extinction risk we compared three species which were generalist pollen foragers on several plant families with three species which specialised on pollen from a single plant species. Both specialist and generalist species showed an increased risk of extinction with shifting climate, and this was particularly high for the most specialised species (Colletes anchusae and C. wolfi). The forage generalist C. impunctatus, which is associated with Boreo-Alpine environments, is potentially threatened through significant reduction in available climatic niche space. Including the distribution of the principal or sole pollen forage plant, when modelling the distribution of monolectic or narrowly oligolectic species, did not improve the predictive accuracy of our models as the plant species were considerably more widespread than the specialised bees associated with them.
Resumo:
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.
Resumo:
To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist-generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod-mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade-offs between pollination and pest-control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.
Resumo:
The Westminster Sustainable Business Forum (WSBF) has compiled a collection of expert essays on the topic of ‘sustainable construction’ contributed to by industry, policy-makers, and specialists from academia.
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
Resumo:
Gamow's explanation of the exponential decay law uses complex 'eigenvalues' and exponentially growing 'eigenfunctions'. This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any wavefunction is given by its expansion in generalized eigenfunctions, we shall answer this question in the most straightforward manner, which at the same time is accessible to graduate students and specialists. Moreover, the presentation can well be used in physics lectures to students.
Resumo:
As the mean age of the global population increases, breast cancer in older individuals will be increasingly encountered in clinical practice. Management decisions should not be based on age alone. Establishing recommendations for management of older individuals with breast cancer is challenging because of very limited level 1 evidence in this heterogeneous population. In 2007, the International Society of Geriatric Oncology (SIOG) created a task force to provide evidence-based recommendations for the management of breast cancer in elderly individuals. In 2010, a multidisciplinary SIOG and European Society of Breast Cancer Specialists (EUSOMA) task force gathered to expand and update the 2007 recommendations. The recommendations were expanded to include geriatric assessment, competing causes of mortality, ductal carcinoma in situ, drug safety and compliance, patient preferences, barriers to treatment, and male breast cancer. Recommendations were updated for screening, primary endocrine therapy, surgery, radiotherapy, neoadjuvant and adjuvant systemic therapy, and metastatic breast cancer.
Resumo:
This paper deconstructs the relationship between the Environmental Sustainability Index (ESI) and national income. The ESI attempts to provide a single figure which encapsulates environmental sustainability' for each country included in the analysis, and this allied with a 'league table' format so as to name and shame bad performers, has resulted in widespread reporting within the popular presses of a number of countries. In essence, the higher the value of the ESI then the more 'environmentally sustainable' a country is deemed to be. A logical progression beyond the use of the ESI to publicise environmental sustainability is its use within a more analytical context. Thus an index designed to simplify in order to have an impact on policy is used to try and understand causes of good and bad performance in environmental sustainability. For example the creators of the ESI claim that ESI is related to GDP/capita (adjusted for Purchasing Power Parity) such that the ESI increases linearly with wealth. While this may in a sense be a comforting picture, do the variables within the ESI allow for alternatives to the story, and if they do then what are the repercussions for those producing such indices for broad consumption amongst the policy makers, mangers, the press, etc.? The latter point is especially important given the appetite for such indices amongst non-specialists, and for all their weaknesses the ESI and other such aggregated indices will not go away. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z ¼ 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z ¼ 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.
Resumo:
Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.
Resumo:
Mediterranean landscapes comprise a complex mosaic of different habitats that vary in the diversity of their floral communities, pollinator communities and pollination services. Using the Greek Island of Lesvos as a model system, we assess the biodiversity value of six common habitats and measure ecosystemic 'health' using pollen grain deposition in three core flowering plants as a measure of pollination services. Three fire-driven habitats were assessed: freshly burnt areas, fully regenerated pine forests and intermediate age scrub; in addition we examined oak woodlands, actively managed olive groves and groves that had been abandoned from agriculture. Oak woodlands, pine forests and managed olive groves had the highest diversity of bees. The habitat characteristics responsible for structuring bee communities were: floral diversity, floral abundance, nectar energy availability and the variety of nectar resources present. Pollination services in two of our plant species, which were pollinated by a limited sub-set of the pollinator community, indicated that pollination levels were highest in the burnt and mature pine habitats. The third species, which was open to all flower visitors, indicated that oak woodlands had the highest levels of pollination from generalist species. Pollination was always more effective in managed olive groves than in abandoned groves. However, the two most common species of bee, the honeybee and a bumblebee, were not the primary pollinators within these habitats. We conclude that the three habitats of greatest overall value for plant-pollinator communities and provision of the healthiest pollination services are pine forests, oak woodland and managed olive groves. We indicate how the highest value habitats may be maintained in a complex landscape to safeguard and enhance pollination function within these habitats and potentially in adjoining agricultural areas. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.