23 resultados para Generalised Additive Model

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Neural Mass model is coupled with a novel method to generate realistic Phase reset ERPs. The power spectra of these synthetic ERPs are compared with the spectra of real ERPs and synthetic ERPs generated via the Additive model. Real ERP spectra show similarities with synthetic Phase reset ERPs and synthetic Additive ERPs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple threshold models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean annual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively growing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoenolpyruvate carboxykinase-1 (PCK1) is the rate-limiting enzyme in the hepatic gluconeogenic pathway. Studies have shown that overexpression of Pck1 in mice results in obesity-related traits and higher levels of physical activity (PA). Therefore, our aims were to investigate whether common genetic variation in the PCK1 gene influences obesity-related traits, PA, and fitness, and to examine whether PA and fitness attenuate the influence of the PCK1 polymorphisms on obesity in children. Analyses were undertaken on data from Danish and Estonian children (958 boys and 1,104 girls) from the European Youth Heart Study (EYHS), a school-based, cross-sectional study of children (mean ± s.d. age: 9.6 ± 0.4 years) and adolescents (15.5 ± 0.5 years). We genotyped eight polymorphisms that captured the common genetic variations in the PCK1 gene. The association between the PCK1 polymorphisms and BMI, waist circumference (WC), sum of four skinfolds, PA, and fitness was tested using an additive model adjusted for age, age-group, gender, maturity, and country. Interactions were tested by including interaction terms in the model. None of the polymorphisms were significantly associated with BMI, WC, sum of four skinfolds, PA, and fitness, and also with the risk of being overweight or obese (P > 0.05). The interactions between the polymorphisms and age-group, gender, PA, and fitness were not statistically significant. This is the first study to comprehensively examine the association of PCK1 polymorphisms with obesity, PA, and fitness. Despite strong evidence from animal studies, our study in the EYHS cohort failed to identify an association of PCK1 polymorphisms with obesity, PA, and fitness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. A new deterministic-mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including, light, nutrients and temperature. A technique called generalised sensitivity analysis was applied to the model to identify the critical parameter uncertainties in the model and investigates the interaction between the chosen parameters of the model. The result of the analysis suggested that 8 out of 12 parameters were significant in obtaining the observed cyanobacterial behaviour in a simulation. It was found that there was a high degree of correlation between the half-saturation rate constants used in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.