75 resultados para General theory of terminology

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calculation of accurate and reliable vibrational potential functions and normal co-ordinates is discussed, for such simple polyatomic molecules as it may be possible. Such calculations should be corrected for the effects of anharmonicity and of resonance interactions between the vibrational states, and should be fitted to all the available information on all isotopic species: particularly the vibrational frequencies, Coriolis zeta constants and centrifugal distortion constants. The difficulties of making these corrections, and of making use of the observed data are reviewed. A programme for the Ferranti Mercury Computer is described by means of which harmonic vibration frequencies and normal co-ordinate vectors, zeta factors and centrifugal distortion constants can be calculated, from a given force field and from given G-matrix elements, etc. The programme has been used on up to 5 × 5 secular equations for which a single calculation and output of results takes approximately l min; it can readily be extended to larger determinants. The best methods of using such a programme and the possibility of reversing the direction of calculation are discussed. The methods are applied to calculating the best possible vibrational potential function for the methane molecule, making use of all the observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional derivations of available potential energy, in a variety of contexts, involve combining some form of mass conservation together with energy conservation. This raises the questions of why such constructions are required in the first place, and whether there is some general method of deriving the available potential energy for an arbitrary fluid system. By appealing to the underlying Hamiltonian structure of geophysical fluid dynamics, it becomes clear why energy conservation is not enough, and why other conservation laws such as mass conservation need to be incorporated in order to construct an invariant, known as the pseudoenergy, that is a positive‐definite functional of disturbance quantities. The available potential energy is just the non‐kinetic part of the pseudoenergy, the construction of which follows a well defined algorithm. Two notable features of the available potential energy defined thereby are first, that it is a locally defined quantity, and second, that it is inherently definable at finite amplitude (though one may of course always take the small‐amplitude limit if this is appropriate). The general theory is made concrete by systematic derivations of available potential energy in a number of different contexts. All the well known expressions are recovered, and some new expressions are obtained. The possibility of generalizing the concept of available potential energy to dynamically stable basic flows (as opposed to statically stable basic states) is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an account of semantic representation that focuses on distinct types of information from which word meanings can be learned. In particular, we argue that there are at least two major types of information from which we learn word meanings. The first is what we call experiential information. This is data derived both from our sensory-motor interactions with the outside world, as well as from our experience of own inner states, particularly our emotions. The second type of information is language-based. In particular, it is derived from the general linguistic context in which words appear. The paper spells out this proposal, summarizes research supporting this view and presents new predictions emerging from this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method of clear-air turbulence (CAT) forecasting based on the Lighthill–Ford theory of spontaneous imbalance and emission of inertia–gravity waves has been derived and applied on episodic and seasonal time scales. A scale analysis of this shallow-water theory for midlatitude synoptic-scale flows identifies advection of relative vorticity as the leading-order source term. Examination of leading- and second-order terms elucidates previous, more empirically inspired CAT forecast diagnostics. Application of the Lighthill–Ford theory to the Upper Mississippi and Ohio Valleys CAT outbreak of 9 March 2006 results in good agreement with pilot reports of turbulence. Application of Lighthill–Ford theory to CAT forecasting for the 3 November 2005–26 March 2006 period using 1-h forecasts of the Rapid Update Cycle (RUC) 2 1500 UTC model run leads to superior forecasts compared to the current operational version of the Graphical Turbulence Guidance (GTG1) algorithm, the most skillful operational CAT forecasting method in existence. The results suggest that major improvements in CAT forecasting could result if the methods presented herein become operational.