3 resultados para Gene synteny
em CentAUR: Central Archive University of Reading - UK
Resumo:
FoxC, FoxF, FoxL1 and FoxQ1 genes have been shown to be clustered in some animal genomes, with mesendodermal expression hypothesised as a selective force maintaining cluster integrity. Hypotheses are, however, constrained by a lack of data from the Lophotrochozoa. Here we characterise members of the FoxC, FoxF, FoxL1 and FoxQ1 families from the annelid Capitella teleta and the molluscs Lottia gigantea and Patella vulgata. We cloned FoxC, FoxF, FoxL1 and FoxQ1 genes from C. teleta, and FoxC, FoxF and FoxL1 genes from P. vulgata, and established their expression during development. We also examined their genomic organisation in C. teleta and L. gigantea, and investigated local syntenic relationships. Our results show mesodermal and anterior gut expression is a common feature of these genes in lophotrochozoans. In L. gigantea FoxC, FoxF and FoxL1 are closely linked, while in C. teleta Ct-foxC and Ct-foxL1 are closely linked, with Ct-foxF and Ct-foxQ1 on different scaffolds. Adjacent to these genes there is limited evidence of local synteny. This demonstrates conservation of genomic organisation and expression of these genes can be traced in all three bilaterian Superphyla. These data are evaluated against competing theories for the long-term maintenance of gene clusters.
Resumo:
Key message We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Abstract Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.
Resumo:
Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely-related crop species, lentil, and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2 cM interval of Vf chromosome 2 which was highly collinear with Mt3. The obvious candidate gene from 77 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene (Mt3g092830, Mt3g092840) controlling anthocyanin production in Medicago and re-sequencing of the Vf orthologue showed a putative causative deletion of the entire 5’ end of the gene.