72 resultados para Gen-nov
em CentAUR: Central Archive University of Reading - UK
Resumo:
A rare monophialidic fungus, Taifanglania hechuanensis gen. & sp. nov., was isolated from soil oil the banks of Jialin River, Hechuan, Chongqing City during a survey of soil-borne filamentous fungi from different phytogeographical areas in China. It is described and illustrated in this paper. A further eight monophialidic species of Paecilomyces are transferred to the genus. Diagnosis features of the new genus are white, grey, straw yellow or brown to black colonies on Czapek agar. Conidiophores are always absent or simple. Phialides are solitary, consisting of a cylindrical or ellipsoidal swollen basal portion, tapering into a thin neck, directly arising on vegetative hyphae or prophialides, sometimes consisting of a whorl of 2 to 3 phialides oil simple conidiophores. Conidia arc one-celled, hyaline, smooth-walled, subglobose, ellipsoidal or fusiform, having or no the connective between conidia and being thermotolerant. The new species is characterized by pale yellow to grey-yellow colonies, solitary phialides with ail ellipsoidal or fusiform basal portion that arise directly from the vegetative hyphae, big conidia (3.1-)3.9-8.7 x ( 1.7-)2.1-4.7(-5.1) mu m with the connective, and thermotolerant growth. A molecular study based oil the nucleotidic sequences of the SSU rDNA and ITS regions support the status of T. hechuanensis as a new species and Taifanglania as a new genus.
Resumo:
Formate stimulates growth of a new bacterium from human feces. With high formate, it ferments glucose to acetate via the Wood-Ljungdahl pathway. The original isolate fermented vegetable cellulose and carboxymethylcellulose, but it lost this ability after storage at -76degreesC. 16S rRNA gene sequencing identifies it as a distinct line within the Clostridium coccoides supra-generic rRNA grouping. We propose naming it Bryantella formatexigens gen. nov., sp. nov.
Resumo:
Four Gram-positive-staining, strictly anaerobic, non-spore-forming, rod-shaped organisms were isolated from a pig manure storage pit. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to two related but distinct groups. Sequence analysis showed that the two groups of isolates were highly related to each other (approx. 97% 16S rRNA gene sequence similarity), forming a distinct cluster within the Clostridium coccoides suprageneric rDNA grouping. Biochemical and physiological studies confirmed the division of the isolates into two related, albeit distinct, groups. Based on both phenotypic and phylogenetic evidence, it is proposed that the unidentified rod-shaped isolates from pig manure should be classified in a novel genus, Hespellia gen. nov., as Hespellia stercorisuis sp. nov. and Hespellia porcina sp. nov. The type species of the novel genus is H. stercorisuis (type strain, PC18(T) = NRRL B-23456(T) = CCUG 46279(T) = ATCC BAA-677(T)) and the type strain of H. porcina is PC80(T) (= NRRL B-23458(T) = ATCC BAA-674(T)).
Resumo:
Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T)).
Resumo:
During studies on the bacteriology of appendicitis in children, we often isolated from inflamed and non-inflamed tissue samples, an unusual bile-resistant pigment-producing strictly anaerobic gram-negative rod. Phenotypically this organism resembles members of Bacteroides fragilis group of species, as it is resistant to bile and exhibits a special-potency-disk pattern (resistance to vancomycin, kanamycin and colistin) typical for the B. fragilis group. However, the production of brown pigment on media containing haemolysed blood and a cellular fatty acid composition dominated by iso-C15:0, suggests that the organism most closely resembles species of the genus Porphyromonas. However, the unidentified organism differs from porphyromonads by being bile-resistant and by not producing butyrate as a metabolic end-product. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism represents a distinct sub-line, associated with but distinct from, the miss-classified species Bacteroides putredinis. The clustering of the unidentified bacterium with Bacteroides putredinis was statistically significant, but they displayed >4% sequence divergence with each other. Chromosomal DNA-DNA pairing studies further confirmed the separateness of the unidentified bacterium and Bacteroides putredinis. Based on phenotypic and phylogenetic considerations, it is proposed that Bacteroides putredinis and the unidentified bacterium from human sources be classified in a new genus Alistipes, as Alistipes putredinis comb. nov. and Alistipes finegoldii sp. nov., respectively. The type strain of Alistipes finegoldii is CCUG 46020(T) (= AHN2437(T)).
Resumo:
Phenotypic and phylogenetic studies were performed on two isolates of an unidentified Gram-positive, anaerobic, non-spore-forming, rod-shaped bacterium that was isolated from human faeces. The organisms were catalase-negative, produced acetic and butyric acids as end products of metabolism and possessed a DNA G+C content of approximately 54 mol%. Comparative 16S rRNA gene sequencing demonstrated that the two isolates were related closely to each other and formed a hitherto unknown sublineage within the Clostridium leptum rRNA cluster of organisms. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium should be classified in a novel genus as Anaerotruncus colihominis gen. nov., so. nov. The type strain of Anaerotruncus colihominis is WAL 14565(T) = CCUG 45055(T) = CIP 107754(T).
Resumo:
Five Gram-negative, motile, aerobic to microaerophilic spirilla were isolated from various depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strains are oxidase- and catalase-positive, metabolize a variety of sugars and carboxylic acids and have an absolute requirement for sodium ions. The predominant fatty acids of the organisms are C-16: (1)omega7c, C-16:0 and C(18:1)omega7c, with C-10:1 3-OH, C-10:0 3-OH, C-12:0 3-OH, C-14:1 3-OH, C-14:0 3-OH and C-19:1 present in smaller amounts. The main polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylamine. The DNA base composition of the strains is 54-55 mol% G + C. 16S rRNA gene sequence comparisons show that the isolates are related to the genera Oceanospirillum, Pseudospirillum, Marinospirillum, Halomonas and Chromohalobacter in the gamma-Proteobacteria. Morphological, physiological and genotypic differences from these previously described genera support the description of a novel genus and species, Saccharospirillum impatiens gen. nov., sp. nov. The type strain is EL-105(T) (= DSM 12546(T) = CECT 5721(T)).
Resumo:
A Gram-negative, aerobic to microaerophilic rod was isolated from 10 m depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strain was oxidase- and catalase-positive, metabolized a variety of carboxylic acids and sugars and produced lipase. Cells had an absolute requirement for artificial sea water, which could not be replaced by NaCl. A large in vivo absorption band at 870 nm indicated production of bacteriochlorophyll a. The predominant fatty acids of this organism were 16:0 and 18:1omega7c, with 3-OH 10:0, 16:1omega7c and 18:0 in lower amounts. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. Ubiquinone 10 was produced. The DNA G + C content was 67 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represents a member of the Roseobacter clade within the alpha-Proteobacteria. The organism showed no particular relationship to any members of this clade but clustered on the periphery of the genera Jannaschia, Octadecabacter and 'Marinosulfonomonas' and the species Ruegeria gelatinovorans. Distinct morphological, physiological and genotypic differences to these previously described taxa supported the description of a new genus and a novel species, for which the name Roseisalinus antarcticus gen. nov., sp. nov. is proposed. The type strain is EL-88(T) (= DSM 11466(T) = CECT 7023(T)).
Resumo:
During studies on the microflora of human feces we have isolated a strictly anaerobic, non-spore-forming, Gram-negative staining organism which exhibits a somewhat variable coccus-shaped morphology. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism is phylogenetically a member of the Clostridium leptum supra-generic rRNA cluster and displays a close affinity to some rDNA clones derived from human and pig feces. The nearest named relatives of the unidentified isolate corresponded to Faecalibacterium prausnitzii (formerly Fusobacterium prausnitzii) displaying a 16S rRNA sequence divergence of approximately 9%, with Anaerofilum agile and A. pentosovorans the next closest relatives of the unidentified bacterium (sequence divergence approximately 10%). Based on phenotypic and phylogenetic considerations, it is proposed that the unusual coccoid-shaped organism be classified as a new genus and species, Subdoligranulum variabile. The type strain of S. variabile is BI 114(T) (= CCUG 47106(T) = DSM 15176(T)). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fifteen strains of an anaerobic, catalase-negative, gram-positive diphtheroid-shaped bacterium recovered from human sources were characterized by phenotypic and molecular chemical and molecular genetic methods. The unidentified bacterium showed some resemblance to Actinomyces species and related taxa, but biochemical testing, polyacrylamide gel electrophoresis analysis of whole-cell proteins, and amplified 16S ribosomal DNA restriction analysis indicated the strains were distinct from all currently named Actinomyces species and related taxa. Comparative 16S rRNA gene sequencing studies showed that the bacterium represents a hitherto-unknown phylogenetic line that is related to but distinct from Actinomyces, Actinobaculum, Arcanobacterium, and Mobiluncus. We propose, on the basis of phenotypic and phylogenetic evidence, that the unknown bacterium from human clinical specimens should be classified as a new genus and species, Varibaculum cambriensis gen. nov., sp. nov. The type strain of Varibaculum cambriensis sp. nov. is CCUG 44998(T) = CIP 107344(T).
Resumo:
Morphological, biochemical, and molecular genetic studies were performed on an unknown anaerobic, catalase-negative, nonspore-forming, rod-shaped bacterium isolated from dog feces. The unknown bacterium was tentatively identified as a Eubacterium species, based on cellular morphological and biochemical tests. 16S rRNA gene sequencing studies, however, revealed that it was phylogenetically distant from Eubacterium limosum, the type species of the genus Eubacterium. Phylogenetically, the unknown species forms a hitherto unknown sub-line proximal to the base of a cluster of organisms (designated rRNA cluster XVI), which includes Clostridium innocuum, Streptococcus pleomorphus, and some Eubacterium species. Based on both phenotypic and phylogenetic criteria, it is proposed that the unknown bacterium be classified as a new genus and species, Allobaculum stercoricanis. Using a specific rRNA-targeted probe designed to identify Allobacultan stercoricanis, in situ hybridisation showed this novel species represents a significant organism in canine feces comprising between 0.1% and 3.7% of total cells stained with DAPI (21 dog fecal samples). The type strain of Allobaculum stereoricanis is DSM 13633(T) = CCUG 45212(T). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Phenotypic and phylogenetic studies were performed on an unidentified Gram-positive, strictly anaerobic, non-spore-forming, rod-shaped bacterium isolated from human feces. The organism was catalase-negative, resistant to 20% bile, produced acetic and butyric acids as end products of glucose metabolism, and possessed a G + C content of approximately 70 mol %. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was a member of the Clostridium sub-phylum of the Gram-positive bacteria, and formed a loose association with rRNA cluster XV. Sequence divergence values of 12% or greater were observed between the unidentified bacterium and all other recognized species within this and related rRNA clusters. Treeing analysis showed the unknown anaerobe formed a deep line branching near to the base of rRNA cluster XV and phylogenetically represents a hitherto unknown taxon, distinct from Acetobacterium, Eubacterium sensu stricto, Pseudoramibacter and other related organisms. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from feces be classified in a new genus Anaerofustis, as Anaerofustis stercorihominis sp. nov. The type strain of Anaerofustis stercorihominis is ATCC BAA-858(T) = CCUG 47767(T). (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Phenotypic and phylogenetic studies were performed on two strains of an unidentified Gram-positive, fastidious, non-spore-forming, coccus-shaped bacterium recovered from human blood. The organism was catalase-negative and grew under strictly anaerobic conditions and in the presence of 2 and 6% O-2. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was, phylogenetically, far removed from peptostreptococci and related Gram-positive coccus-shaped organisms, but exhibited a phylogenetic association with Clostridium rRNA cluster III [as defined by Collins et al, Int J Syst Bacteriol 44 (1994), 812-826]. Sequence divergence values of 15% or more were observed between the unidentified bacterium and all other recognized species within this and related rRINIA clostridial clusters. Treeing analysis showed that the unknown bacterium formed a deep line branching at the periphery of rRNA cluster III and represents a hitherto unknown genus within this supra-generic grouping. On the basis of both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from blood be classified in a new genus, Fastidiosipila gen. nov., as Fastidiosipila sanguinis sp, nov. The type strain of Fastidiosipila sanguinis is CCUG 47711(T) (= CIP 108292(T)).
Resumo:
Phenotypic and molecular genetic studies were performed on an unknown facultative anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from a pig manure storage pit. The unknown bacterium was nutritionally fastidious with growth enhanced by the addition of rumen fluid and was phenotypically initially identified as an Eubacterium species. Comparative 16S rRNA gene sequencing studies, however, revealed that the unknown bacterium was phylogenetically distant from Eubacterium limosum (the type species of the genus Eubacterium) and related organisms. Phylogenetically, the unknown species displayed a close association with an uncultured organism from human subgingival plaque and formed an unknown sub-line within a cluster of organisms which includes Alloioccoccus otitis, Alkalibacterium olivoapovliticus, Allofustis seminis, Dolosigranulum pigrum, and related organisms, within the low mol% G + C Gram-positive bacteria. Sequence divergence values of > 8% with all known taxonomically recognised taxa, however, clearly indicates the novel bacterium represents a hitherto unknown genus. Based on both phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig manure be classified in a new genus and species, as Atopostipes suicloacale gen. nov., sp. nov. The type strain of Atopostipes suicloacale is PPC79(T) = NRRL 23919(T) = DSM 15692(T). Crown Copyright (C) 2004 Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel Gram-positive, aerobic, catalase-negative, coccus-shaped organism originating from tobacco was characterized using phenotypic and molecular taxonomic methods. The organism contained a cell wall murein based on L-lysine (variation A4 alpha, type L-lysine-L-glutamic acid), synthesized long-chain cellular fatty acids of the straight-chain saturated and monounsaturated types (with C(16:1)omega 9, C-16:0 and C(18:1)omega 9 predominating) and possessed a DNA G+C content of 46 mol%. Based on morphological, biochemical and chemical characteristics, the coccus-shaped organism did not conform to any presently recognized taxon. Comparative 16S rRNA gene sequencing studies confirmed the distinctiveness of the unknown coccus, with the bacterium displaying sequence divergence values of greater than 7% with other recognized Gram-positive taxa. Treeing analysis reinforced its distinctiveness, with the unidentified organism forming a relatively long subline branching at the periphery of an rRNA gene sequence cluster which encompasses the genera Alloiococcus, Allolustis, Alkalibacterium, Atopostipes, Dolosigranulum and Marinilactibacillus. Based on phenotypic and molecular phylogenetic evidence, it is proposed that the unknown organism from tobacco be classified as a new genus and species, Atopococcus tabaci gen. nov., sp. nov. The type strain of Atopococcus tabaci is CCUG 48253(T) (= CIP 108502(T)).