66 resultados para Gaussian Plume model for multiple sources foe Cochin

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of stationary, non-passive plumes can be simulated in a reasonably simple and accurate way by integral models. One of the key requirements of these models, but also one of their less well-founded aspects, is the entrainment assumption, which parameterizes turbulent mixing between the plume and the environment. The entrainment assumption developed by Schatzmann and adjusted to a set of experimental results requires four constants and an ad hoc hypothesis to eliminate undesirable terms. With this assumption, Schatzmann’s model exhibits numerical instability for certain cases of plumes with small velocity excesses, due to very fast radius growth. The purpose of this paper is to present an alternative entrainment assumption based on a first-order turbulence closure, which only requires two adjustable constants and seems to solve this problem. The asymptotic behaviour of the new formulation is studied and compared to previous ones. The validation tests presented by Schatzmann are repeated and it is found that the new formulation not only eliminates numerical instability but also predicts more plausible growth rates for jets in co-flowing streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] A two-dimensional plume model is used to study the interaction between Filchner-Ronne Ice Shelf, Antarctica and its underlying ocean cavity. Ice Shelf Water (ISW) plumes are initiated by the freshwater released from a melting ice shelf and, if they rise, may become supercooled and deposit marine ice due to the pressure increase in the in situ freezing temperature. The aim of this modeling study is to determine the origin of the thick accretions of marine ice at the base of Filchner-Ronne Ice Shelf and thus improve our understanding of ISW flow paths. The model domain is defined from measurements of ice shelf draft, and from this ISW the model is able to predict plumes that exit the cavity in the correct locations. The modeled plumes also produce basal freezing rates that account for measured marine ice thicknesses in the western part of Ronne Ice Shelf. We find that the freezing rate and plume properties are significantly influenced by the confluence of plumes from different meltwater sources. We are less successful in matching observations of marine ice under the rest of Filchner-Ronne Ice Shelf, which we attribute primarily to this model’s neglect of circulations in the ocean outside the plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lincoln–Petersen estimator is one of the most popular estimators used in capture–recapture studies. It was developed for a sampling situation in which two sources independently identify members of a target population. For each of the two sources, it is determined if a unit of the target population is identified or not. This leads to a 2 × 2 table with frequencies f11, f10, f01, f00 indicating the number of units identified by both sources, by the first but not the second source, by the second but not the first source and not identified by any of the two sources, respectively. However, f00 is unobserved so that the 2 × 2 table is incomplete and the Lincoln–Petersen estimator provides an estimate for f00. In this paper, we consider a generalization of this situation for which one source provides not only a binary identification outcome but also a count outcome of how many times a unit has been identified. Using a truncated Poisson count model, truncating multiple identifications larger than two, we propose a maximum likelihood estimator of the Poisson parameter and, ultimately, of the population size. This estimator shows benefits, in comparison with Lincoln–Petersen’s, in terms of bias and efficiency. It is possible to test the homogeneity assumption that is not testable in the Lincoln–Petersen framework. The approach is applied to surveillance data on syphilis from Izmir, Turkey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six land surface models and five global hydrological models participate in a model intercomparison project (WaterMIP), which for the first time compares simulation results of these different classes of models in a consistent way. In this paper the simulation setup is described and aspects of the multi-model global terrestrial water balance are presented. All models were run at 0.5 degree spatial resolution for the global land areas for a 15-year period (1985-1999) using a newly-developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm year-1 (60,000 to 85,000 km3 year-1) and simulated runoff ranges from 290 to 457 mm year-1 (42,000 to 66,000 km3 year-1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically-based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between model are major sources of uncertainty. Climate change impact studies thus need to use not only multiple climate models, but also some other measure of uncertainty, (e.g. multiple impact models).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a dynamic model to study how different levels of information about the root determinants of wealth (luck versus effort) can impact inequality and intergenerational mobility through societal beliefs, individual choices and redistributive policies. To my knowledge, the model presented is the first dynamicmodel in which skills are stochastic and both beliefs and voted redistribution are determined endogenously. The model is able to explain a number of empirical facts. Large empirical evidence shows that the difference in the political support for redistribution appears to reflect differences in the social perceptions regarding the determinants of individual wealth and the underlying sources of income inequality. Moreover the beliefs about the determinants of wealth impact individual choices of effort and therefore the beliefs about the determinants of wealth impact inequality and mobility both through choices of effort and redistributive policies. The model generates multiple equilibria (US versus Europe-type) which may account for the observed features not only in terms of societal beliefs and redistribution but also in terms of perceived versus real mobility and inequality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are presented of a study of a performance of various track-side railway noise barriers, determined by using a two- dimensional numerical boundary element model. The basic model uses monopole sources and has been adapted to allow the sources to exhibit dipole-type radiation characteristics. A comparison of boundary element predictions of the performance of simple barriers and vehicle shapes is made with results obtained by using the standard U.K. prediction method. The results obtained from the numerical model indicate that modifying the source to exhibit dipole characteristics becomes more significant as the height of the barrier increases, and suggest that for any particular shape, absorbent barriers provide much better screening efficiency than the rigid equivalent. The cross-section of the rolling stock significantly affects the performance of rigid barriers. If the position of the upper edge is fixed, the results suggest that simple absorptive barriers provide more effective screening than tilted barriers. The addition of multiple edges to a barrier provides additional insertion loss without any increase in barrier height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou ndary is proposed for use in a plume model that is written in terms of the depth-mean velocity. The drag l aw contains a variable turning angle between the mean velocity and the drag imposed by the turbulent bound ary layer. The effect of the variable turning angle in the drag law is studied for a plume of ice shelf wat er (ISW) ascending and turning beneath an Antarctic ice shelf with draft decreasing away from the groundi ng line. As the ISW plume ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh ich alters the buoyancy forcing driving the plume motion. Under these conditions, the typical turning ang le is of order 10° over most of the plume area for a range of drag coefficients (the minus sign arises for th e Southern Hemisphere). The rotation of the drag with respect to the mean velocity is found to be signifi cant if the drag coefficient exceeds 0.003; in this case the plume body propagates farther along and across the b ase of the ice shelf than a plume with the standard quadratic drag law with no turning angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In winter, brine rejection from sea ice formation and export in the Weddell Sea, offshore of Filchner-Ronne Ice Shelf (FRIS), leads to the formation of High Salinity Shelf Water (HSSW). This dense water mass enters the cavity beneath FRIS by sinking southward down the sloping continental shelf towards the grounding line. Melting occurs when the HSSW encounters the ice shelf, and the meltwater released cools and freshens the HSSW to form a water mass known as Ice Shelf Water (ISW). If this ISW rises, the ‘ice pump’ is initiated (Lewis and Perkin, 1986), whereby the ascending ISW becomes supercooled and deposits marine ice at shallower locations due to the pressure increase in the in-situ freezing temperature. Sandh¨ager et al. (2004) were able to infer the thickness patterns of marine ice deposits at the base of FRIS (figure 1), so the primary aim of this work is to try to understand the ocean flows that determine these patterns. The plume model we use to investigate ISW flow is described fully by Holland and Feltham (accepted) so only a relatively brief outline is presented here. The plume is simulated by combining a parameterisation of ice shelf basal interaction and a multiplesize- class frazil dynamics model with an unsteady, depth-averaged reduced-gravity plume model. In the model an active region of ISW evolves above and within an expanse of stagnant ambient fluid, which is considered to be ice-free and has fixed profiles of temperature and salinity. The two main assumptions of the model are that there is a well-mixed layer underneath the ice shelf and that the ambient fluid outside the plume is stagnant with fixed properties. The topography of the ice shelf that the plume flows beneath is set to the FRIS ice shelf draft calculated by Sandh¨ager et al. (2004) masked with the grounding line from the Antarctic Digital Database (ADD Consortium, 2002). To initiate the plumes, we assume that the intrusion of dense HSSW initially causes melting at the points on the grounding line where the glaciological tributaries feeding FRIS go afloat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a process-based model for the dispersion of a passive scalar in the turbulent flow around the buildings of a city centre. The street network model is based on dividing the airspace of the streets and intersections into boxes, within which the turbulence renders the air well mixed. Mean flow advection through the network of street and intersection boxes then mediates further lateral dispersion. At the same time turbulent mixing in the vertical detrains scalar from the streets and intersections into the turbulent boundary layer above the buildings. When the geometry is regular, the street network model has an analytical solution that describes the variation in concentration in a near-field downwind of a single source, where the majority of scalar lies below roof level. The power of the analytical solution is that it demonstrates how the concentration is determined by only three parameters. The plume direction parameter describes the branching of scalar at the street intersections and hence determines the direction of the plume centreline, which may be very different from the above-roof wind direction. The transmission parameter determines the distance travelled before the majority of scalar is detrained into the atmospheric boundary layer above roof level and conventional atmospheric turbulence takes over as the dominant mixing process. Finally, a normalised source strength multiplies this pattern of concentration. This analytical solution converges to a Gaussian plume after a large number of intersections have been traversed, providing theoretical justification for previous studies that have developed empirical fits to Gaussian plume models. The analytical solution is shown to compare well with very high-resolution simulations and with wind tunnel experiments, although re-entrainment of scalar previously detrained into the boundary layer above roofs, which is not accounted for in the analytical solution, is shown to become an important process further downwind from the source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.