11 resultados para GROWTH FUNCTIONS
em CentAUR: Central Archive University of Reading - UK
Resumo:
A total of 86 profiles from meat and egg strains of chickens (male and female) were used in this study. Different flexible growth functions were evaluated with regard to their ability to describe the relationship between live weight and age and were compared with the Gompertz and logistic equations, which have a fixed point of inflection. Six growth functions were used: Gompertz, logistic, Lopez, Richards, France, and von Bertalanffy. A comparative analysis was carried out based on model behavior and statistical performance. The results of this study confirmed the initial concern about the limitation of a fixed point of inflection, such as in the Gompertz equation. Therefore, consideration of flexible growth functions as an alternatives to the simpler equations (with a fixed point of inflection) for describing the relationship between live weight and age are recommended for the following reasons: they are easy to fit, they very often give a closer fit to data points because of their flexibility and therefore a smaller RSS value, than the simpler models, and they encompasses simpler models for the addition of an extra parameter, which is especially important when the behavior of a particular data set is not defined previously.
Resumo:
The results from three types of study with broilers, namely nitrogen (N) balance, bioassays and growth experiments, provided the data used herein. Sets of data on N balance and protein accretion (bioassay studies) were used to assess the ability of the monomolecular equation to describe the relationship between (i) N balance and amino acid (AA) intake and (ii) protein accretion and AA intake. The model estimated the levels of isoleucine, lysine, valine, threonine, methionine, total sulphur AAs and tryptophan resulting in zero balance to be 58, 59, 80, 96, 23, 85 and 32 mg/kg live weight (LW)/day, respectively. These estimates show good agreement with those obtained in previous studies. For the growth experiments, four models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine crude protein (CP) intake at maintenance and efficiency of utilization of CP intake for producing gain. They were: a straight line, two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola) and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The estimates of CP requirement for maintenance and efficiency of utilization of CP intake for producing gain varied from 5.4 to 5.9 g/kg LW/day and 0.60 to 0.76, respectively, depending on the models.
Resumo:
Data from six studies with male broilers fed diets covering a wide range of energy and protein were used in the current two analyses. In the first analysis, five models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine metabolizable energy intake at maintenance and efficiency of utilization of metabolizable energy intake for producing gain. In addition to the straight line, two types of functional form were used. They were forms describing (i) diminishing returns behaviour (monomolecular and rectangular hyperbola) and (ii) sigmoidal behaviour with a fixed point of inflection (Gompertz and logistic). These models determined metabolizable energy requirement for maintenance to be in the range 437-573 kJ/kg of body weight/day depending on the model. The values determined for average net energy requirement for body weight gain varied from 7(.)9 to 11(.)2 kJ/g of body weight. These values show good agreement with previous studies. In the second analysis, three types of function were assessed as candidates for describing the relationship between body weight and cumulative metabolizable energy intake. The functions used were: (a) monomolecular (diminishing returns behaviour), (b) Gompertz (smooth sigmoidal behaviour with a fixed point of inflection) and (c) Lopez, France and Richards (diminishing returns and sigmoidal behaviour with a variable point of inflection). The results of this analysis demonstrated that equations capable of mimicking the law of diminishing returns describe accurately the relationship between body weight and cumulative metabolizable energy intake in broilers.
Resumo:
Protein kinase C (PKC) plays a pivotal role in modulating the growth of melanocytic cells in culture. We have shown previously that a major physiological substrate of PKC, the 80 kDa myristoylated alanine-rich C-kinase substrate (MARCKS), can be phosphorylated in quiescent, non-tumorigenic melanocytes exposed transiently to a biologically active phorbol ester, but cannot be phosphorylated in phorbol ester-treated, syngeneic malignant melanoma cells. Despite its ubiquitous distribution, the function of MARCKS in cell growth and transformation remains to be demonstrated clearly. We report here that MARCKS mRNA and protein levels are down-regulated significantly in the spontaneously derived murine B16 melanoma cell line compared with syngeneic normal Mel-ab melanocytes. In contrast, the tumourigenic v-Ha-ras-transfonned melan-ocytic line, LTR Ras 2, showed a high basal level of MARCKS phosphorylation which was not enhanced by treatment of cells with phorbol ester. Furthermore, protein levels of MARCKS in LTR Ras 2 cells were similar to those expressed in Mel-ab melanocytes. However, in four out of six murine tumour cell lines investigated, levels of MARCKS protein were barely detectable. Transfection of B16 cells with a plasmid containing the MARCKS cDNA in the sense orientation produced two neomycin-resistant clones displaying reduced proliferative capacity and decreased anchorage-independent growth compared with control cells. In contrast, transfection with the antisense MARCKS construct produced many colonies which displayed enhanced growth and transforming potential compared with control cells. Thus, MARCKS appears to act as a novel growth suppressor in the spontaneous transformation of cells of melanocyte origin and may play a more general role in the tumour progression of other carcinomas.
Resumo:
The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.
Resumo:
The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359-415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8.7 to 10.9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.
Resumo:
Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.