14 resultados para GPS Based Aerial Triangulation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Surface-based GPS measurements of zenith path delay (ZPD) can be used to derive vertically integrated water vapor (IWV) of the atmosphere. ZPD data are collected in a global network presently consisting of 160 stations as part of the International GPS Service. In the present study, ZPD data from this network are converted into IWV using observed surface pressure and mean atmospheric water vapor column temperature obtained from the European Centre for Medium-Range Weather Forecasts' (ECMWF) operational analyses (OA). For the 4 months of January/July 2000/2001, the GPS-derived IWV values are compared to the IWV from the ECMWF OA, with a special focus on the monthly averaged difference (bias) and the standard deviation of daily differences. This comparison shows that the GPS-derived IWV values are well suited for the validation of OA of IWV. For most GPS stations, the IWV data agree quite well with the analyzed data indicating that they are both correct at these locations. Larger differences for individual days are interpreted as errors in the analyses. A dry bias in the winter is found over central United States, Canada, and central Siberia, suggesting a systematic analysis error. Larger differences were mainly found in mountain areas. These were related to representation problems and interpolation difficulties between model height and station height. In addition, the IWV comparison can be used to identify errors or problems in the observations of ZPD. This includes errors in the data itself, e.g., erroneous outlier in the measured time series, as well as systematic errors that affect all IWV values at a specific station. Such stations were excluded from the intercomparison. Finally, long-term requirements for a GPS-based water vapor monitoring system are discussed.
Resumo:
Objective: The aim of the present study was to determine the relationship between the characteristics of general practices and the perceptions of the psychological content of consultations by GPs in those practices. Methods: A cross-sectional survey was conducted of all GPs (22 GPs based in nine practices) serving a discrete inner city community of 41 000 residents. GPs were asked to complete a log-diary over a period of five working days, rating their perception of the psychological content of each consultation on a 4-point Likert scale, ranging from 0 (no psychological content) to 3 (entirely psychological in content). The influence of GP and practice characteristics on psychological content scores was examined. Results: Data were available for every surgery-based consultation (n = 2206) conducted by all 22 participating GPs over the study period. The mean psychological content score was 0.58 (SD 0.33). Sixty-four percent of consultations were recorded as being without any psychological content; 6% were entirely psychological in content. Higher psychological content scores were significantly associated with younger GPs, training practices (n = 3), group practices (n = 4), the presence of on-site mental health workers (n = 5), higher antidepressant prescribing volumes and the achievement of vaccine and smear targets. Training status had the greatest predictive power, explaining 51% of the variation in psychological content. Neither practice consultation rates, GP list size, annual psychiatric referral rates nor volumes of benzodiazepine prescribing were related to psychological content scores. Conclusion: Increased awareness by GPs of the psychological dimension within a consultation may be a feature of the educational environment of training practices.
Resumo:
We compare measurements of integrated water vapour (IWV) over a subarctic site (Kiruna, Northern Sweden) from five different sensors and retrieval methods: Radiosondes, Global Positioning System (GPS), ground-based Fourier-transform infrared (FTIR) spectrometer, ground-based microwave radiometer, and satellite-based microwave radiometer (AMSU-B). Additionally, we compare also to ERA-Interim model reanalysis data. GPS-based IWV data have the highest temporal coverage and resolution and are chosen as reference data set. All datasets agree reasonably well, but the ground-based microwave instrument only if the data are cloud-filtered. We also address two issues that are general for such intercomparison studies, the impact of different lower altitude limits for the IWV integration, and the impact of representativeness error. We develop methods for correcting for the former, and estimating the random error contribution of the latter. A literature survey reveals that reported systematic differences between different techniques are study-dependent and show no overall consistent pattern. Further improving the absolute accuracy of IWV measurements and providing climate-quality time series therefore remain challenging problems.
Resumo:
Maps of kriged soil properties for precision agriculture are often based on a variogram estimated from too few data because the costs of sampling and analysis are often prohibitive. If the variogram has been computed by the usual method of moments, it is likely to be unstable when there are fewer than 100 data. The scale of variation in soil properties should be investigated prior to sampling by computing a variogram from ancillary data, such as an aerial photograph of the bare soil. If the sampling interval suggested by this is large in relation to the size of the field there will be too few data to estimate a reliable variogram for kriging. Standardized variograms from aerial photographs can be used with standardized soil data that are sparse, provided the data are spatially structured and the nugget:sill ratio is similar to that of a reliable variogram of the property. The problem remains of how to set this ratio in the absence of an accurate variogram. Several methods of estimating the nugget:sill ratio for selected soil properties are proposed and evaluated. Standardized variograms with nugget:sill ratios set by these methods are more similar to those computed from intensive soil data than are variograms computed from sparse soil data. The results of cross-validation and mapping show that the standardized variograms provide more accurate estimates, and preserve the main patterns of variation better than those computed from sparse data.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
Construction materials and equipment are essential building blocks of every construction project and may account for 50-60 per cent of the total cost of construction. The rate of their utilization, on the other hand, is the element that most directly relates to a project progress. A growing concern in the industry that inadequate efficiency hinders its success could thus be accommodated by turning construction into a logistic process. Although mostly limited, recent attempts and studies show that Radio Frequency IDentification (RFID) applications have significant potentials in construction. However, the aim of this research is to show that the technology itself should not only be used for automation and tracking to overcome the supply chain complexity but also as a tool to generate, record and exchange process-related knowledge among the supply chain stakeholders. This would enable all involved parties to identify and understand consequences of any forthcoming difficulties and react accordingly before they cause major disruptions in the construction process. In order to achieve this aim the study focuses on a number of methods. First of all it develops a generic understanding of how RFID technology has been used in logistic processes in industrial supply chain management. Secondly, it investigates recent applications of RFID as an information and communication technology support facility in construction logistics for the management of construction supply chain. Based on these the study develops an improved concept of a construction logistics architecture that explicitly relies on integrating RFID with the Global Positioning System (GPS). The developed conceptual model architecture shows that categorisation provided through RFID and traceability as a result of RFID/GPS integration could be used as a tool to identify, record and share potential problems and thus vastly improve knowledge management processes within the entire supply chain. The findings thus clearly show a need for future research in this area.
Resumo:
This paper presents a study on applying an integrated Global Position System (GPS) and Geographacial Information System (GIS) technology to the reduction of construction waste. During the study, a prototype study is developed from automatic data capture system such as the barcoding system for construction material and equipment (M&E) management onsite, whilst the integrated GPS and GIS technology is combined to the M&E system based on the Wide Area Network (WAN). Then, a case study is conducted to demonstrate the deployment of the system. Experimental results indicate that the proposed system can minimize the amount of onsite material wastage.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
There is growing interest in the ways in which the location of a person can be utilized by new applications and services. Recent advances in mobile technologies have meant that the technical capability to record and transmit location data for processing is appearing in off-the-shelf handsets. This opens possibilities to profile people based on the places they visit, people they associate with, or other aspects of their complex routines determined through persistent tracking. It is possible that services offering customized information based on the results of such behavioral profiling could become commonplace. However, it may not be immediately apparent to the user that a wealth of information about them, potentially unrelated to the service, can be revealed. Further issues occur if the user agreed, while subscribing to the service, for data to be passed to third parties where it may be used to their detriment. Here, we report in detail on a short case study tracking four people, in three European member states, persistently for six weeks using mobile handsets. The GPS locations of these people have been mined to reveal places of interest and to create simple profiles. The information drawn from the profiling activity ranges from intuitive through special cases to insightful. In this paper, these results and further extensions to the technology are considered in light of European legislation to assess the privacy implications of this emerging technology.
Resumo:
The aim of using GPS for Alzheimer's Patients is to give carers and families of those affected by Alzheimer's Disease, as well as all the other dementia related conditions, a service that can, via SMS text message, notify them should their loved one leave their home. Through a custom website, it enables the carer to remotely manage a contour boundary that is specifically assigned to the patient as well as the telephone numbers of the carers. The technique makes liberal use of such as Google Maps.
Resumo:
In order to make best use of the opportunities provided by space missions such as the Radiation Belt Storm Probes, we determine the response of complementary subionospheric radiowave propagation measurements (VLF), riometer absorption measurements (CNA), and GPS-produced total electron content (vTEC) to different energetic electron precipitation (EEP). We model the relative sensitivity and responses of these instruments to idealised monoenergetic beams of precipitating electrons, and more realistic EEP spectra chosen to represent radiation belts and substorm precipitation. In the monoenergetic beam case, we find riometers are more sensitive to the same EEP event occurring during the day than during the night, while subionospheric VLF shows the opposite relationship, and the change in vTEC is independent. In general, the subionospheric VLF measurements are much more sensitive than the other two techniques for EEP over 200 keV, responding to flux magnitudes two-three orders of magnitude smaller than detectable by a riometer. Detectable TEC changes only occur for extreme monoenergetic fluxes. For the radiation belt EEP case, clearly detectable subionospheric VLF responses are produced by daytime fluxes that are ~10 times lower than required for riometers, while nighttime fluxes can be 10,000 times lower. Riometers are likely to respond only to radiation belt fluxes during the largest EEP events and vTEC is unlikely to be significantly disturbed by radiation belt EEP. For the substorm EEP case both the riometer absorption and the subionospheric VLF technique respond significantly, as does the change in vTEC, which is likely to be detectable at ~3-4 TECu.