52 resultados para GOLD ELECTRODE
em CentAUR: Central Archive University of Reading - UK
Resumo:
Group 6 complexes of the type [M(CO)4(bpy)] (M=Cr, Mo, W) are capable of behaving as electrochemical catalysts for the reduction of CO2 at potentials less negative than those for the reduction of the radical anions [M(CO)4(bpy)].−. Cyclic voltammetric, chronoamperometric and UV/Vis/IR spectro-electrochemical data reveal that five-coordinate [M(CO)3(bpy)]2− are the active catalysts. The catalytic conversion is significantly more efficient in N-methyl-2-pyrrolidone (NMP) compared to tetrahydrofuran, which may reflect easier CO dissociation from 1e−-reduced [M(CO)4(bpy)].− in the former solvent, followed by second electron transfer. The catalytic cycle may also involve [M(CO)4(H-bpy)]− formed by protonation of [M(CO)3(bpy)]2−, especially in NMP. The strongly enhanced catalysis using an Au working electrode is remarkable, suggesting that surface interactions may play an important role, too.
Resumo:
Quartz crystal microbalance (QCM) measurements of the formation of a 4-aminothiophenol (4-ATP)self-assembled monolayer (SAM) at a gold electrode showed that a surface coverage of 118 ng cm(-2) was obtained after a 3 h exposure period, indicating that good surface coverage was achieved. Cyclic voltammetry of the ferricyanide redox couple across this SAM modified surface produced similar results to those of a bare electrode; however, the electroreduction of oxygen was found to be impaired. The 4-ATP SAM layer was not stable to repeated electrochemical oxidation and reduction; it is believed that the 4-ATP SAM layer was first converted to a 4'-mercapto-N-phenylquinone diimine (NPQD) layer followed by subsequent formation of a 4'-mercapto-N-phenylquinone monoimine (NPQM) layer. We also report a quartz crystal microbalance study of the attachment of platinum nanoparticles to such SAM modified electrodes. We show that five times the amount of platinum nanoparticles can be attached to a 4-ATP modified electrode surface (observed frequency change - 187 Hz) compared with an NPQD modified electrode surface (observed frequency change -35 Hz). The presence of the platinum particles was confirmed electrochemically by their surface electrochemical properties, which were different from those of the underlying gold electrode. It is believed that this is the first time that such direct evidence of electrochemical communication between platinum nanoparticles and a SAM modified electrode surface has been obtained. It was also shown to be possible to build up multilayer SAM/nanoparticle modified surfaces while maintaining efficient electrochemical communication. Up to three SAM/nanoparticle sandwich layers were constructed.
Resumo:
Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.
Resumo:
In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.
Resumo:
We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
The acute hippocampal brain slice preparation is an important in vitro screening tool for potential anticonvulsants. Application of 4-aminopyridine (4-AP) or removal of external Mg2+ ions induces epileptiform bursting in slices which is analogous to electrical brain activity seen in status epilepticus states. We have developed these epileptiform models for use with multi-electrode arrays (MEAs), allowing recording across the hippocampal slice surface from 59 points. We present validation of this novel approach and analyses using two anticonvulsants, felbamate and phenobarbital, the effects of which have already been assessed in these models using conventional extracellular recordings. In addition to assessing drug effects on commonly described parameters (duration, amplitude and frequency), we describe novel methods using the MEA to assess burst propagation speeds and the underlying frequencies that contribute to the epileptiform activity seen. Contour plots are also used as a method of illustrating burst activity. Finally, we describe hitherto unreported properties of epileptiform bursting induced by 100M4-AP or removal of external Mg2+ ions. Specifically, we observed decreases over time in burst amplitude and increase over time in burst frequency in the absence of additional pharmacological interventions. These MEA methods enhance the depth, quality and range of data that can be derived from the hippocampal slice preparation compared to conventional extracellular recordings. It may also uncover additional modes of action that contribute to anti-epileptiform drug effects
Resumo:
Temperature-programmed reaction measurements supported by scanning tunneling microscopy have shown that phenylacetylene and iodobenzene react on smooth Au(111) under vacuum conditions to yield biphenyl and diphenyldiacetylene, the result of homocoupling of the reactant molecules. They also produce diphenylacetylene, the result of Sonogashira cross-coupling, prototypical of a class of reactions that are of paramount importance in synthetic organic chemistry and whose mechanism remains controversial. Roughened Au(111) is completely inert toward all three reactions, indicating that the availability of crystallographically well-defined adsorption sites is crucially important. High-resolution X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy show that the reactants are initially present as intact, essentially flat-lying molecules and that the temperature threshold for Sonogashira coupling coincides with that for C−I bond scission in the iodobenzene reactant. The fractional-order kinetics and low temperature associated with desorption of the Sonogashira product suggest that the reaction occurs at the boundaries of islands of adsorbed reactants and that its appearance in the gas phase is rate-limited by the surface reaction. These findings demonstrate unambiguously and for the first time that this heterogeneous cross-coupling chemistry is an intrinsic property of extended, metallic pure gold surfaces: no other species, including solvent molecules, basic or charged (ionic) species are necessary to mediate the process.
Resumo:
This paper critiques contemporary research and policy approaches taken toward the analysis and abatement of mercury pollution in the small-scale gold mining sector. Unmonitored releases of mercury from gold amalgamation have caused considerable environmental contamination and human health complications in rural reaches of sub-Saharan Africa, Latin America and Asia. Whilst these problems have caught the attention of the scientific community over the past 15-20 years, the research that has since been undertaken has failed to identify appropriate mitigation measures, and has done little to advance understanding of why contamination persists. Moreover, the strategies used to educate operators about the impacts of acute mercury exposure, and the technologies implemented to prevent farther pollution, have been marginally effective at best. The mercury pollution problem will not be resolved until governments and donor agencies commit to carrying out research aimed at improving understanding of the dynamics of small scale gold mining communities. Acquisition of this knowledge is the key to designing and implementing appropriate support and abatement measures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper critically examines the challenges with, and impacts of, adopting the models in place for fair trade agriculture in the artisanal gold mining sector. Over the past two years, an NGO-led 'fair trade gold' movement has surfaced, its crystallization fuelled by a burgeoning body of evidence that points to impoverished artisanal miners in developing countries receiving low payments for their gold, as well as working in hazardous and unsanitary conditions. Proponents of fair trade gold contest that increased interaction between artisanal miners and Western jewellers could facilitate the former receiving fairer prices for gold, accessing support services, and ultimately, improving their quality of life. In the case of sub-Saharan Africa, however, the gold being mined on an artisanal scale does not supply Western retailers as perhaps believed; it is rather an important source of foreign exchange, which host governments employ buyers to collect for their coffers. It is maintained here that if the underlying purpose of fair trade is to improve the livelihoods and well-being of subsistence producers in developing countries, then the models that have proved so successful in alleviating the hardships of agro-producers of 'tropical' commodities such as coffee, tea, bananas and cocoa, should be adapted to artisanal gold mining in sub-Saharan Africa. Campaigns promoting 'fair trade gold' in the region should view host governments, and not Western retailers, as the 'end consumer', and focus on improving governance at the grassroots, organizing informal operators into working cooperatives, and addressing complications with purchasing arrangements - all of which would go a long way toward improving the livelihoods of subsistence artisanal miners. A case study of Noyem, Ghana, the location of a sprawling illegal gold mining community, is presented, which magnifies these challenges further and provides perspective on how they can be overcome. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper critiques the approach taken by the Ghanaian Government to address mercury pollution in the artisanal and small-scale gold mining sector. Unmonitored releases of mercury-used in the gold-amalgamation process-have caused numerous environmental complications throughout rural Ghana. Certain policy, technological and educational initiatives taken to address the mounting problem, however, have proved marginally effective at best, having been designed and implemented without careful analysis of mine community dynamics, the organization of activities, operators' needs and local geological conditions. Marked improvements can only be achieved in this area through increased government-initiated dialogue with the now-ostracized illegal galamsey mining community; introducing simple, cost-effective techniques for the reduction of mercury emissions; and effecting government-sponsored participatory training exercises as mediums for communicating information about appropriate technologies and the environment. (c) 2006 Elsevier Inc. All rights reserved.