27 resultados para GLUCOSE TRANSPORTER 4

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

RNase A (1 mM) was incubated with glucose (0.4 M) at 37°C for up to 14 days in phosphate buffer (0.2 M, pH 7.4), digested with trypsin and analysed by LC-MS. The major sites of fructoselysine formation were Lys1, Lys7, Lys37 and Lys41. Three of these sites (Lys7, Lys37 and Lys41) were also the major sites of Ne-(carboxymethyl)lysine formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N-is an element of-(carboxymethyl)lysine (CIVIL). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degreesC for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CIVIL formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N-2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CIVIL is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Installing hydroxymethyl and hydroxyethyl substitutions at C-4 through vinylation and hydroboration-oxidation reactions of the C-4 bis-hydroxymethyl derivative of D-glucose based substrate, and inserting heteroatoms thereafter permitted formation of N-, O-, or S-heterocycles leading to [4,5]or [5,5]-spirocycles and a bicyclo[3.3.0]octane product. Some of the spirocycles were converted to spironucleosides under Vorbruggen glycosidation reaction conditions. Similarly, the bicyclic product was elaborated to the corresponding bicyclic nucleoside as well as an unexpected tricyclic nucleoside.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel redox- and glucose-responsive hydrogels have been synthesized by simple mixing of poly(vinyl alcohol) (PVA) and 4-mercaptophenylboronic acid (MPBA) in aqueous solutions (pH > 9) in an oxidative aqueous media. These hydrogels are produced through the formation of disulfide linkages between MPBA molecules in an oxidative environment (oxygen dissolved in solution or hydrogen peroxide added to the reaction mixture) and complexation via dynamic covalent bonds between PVA and MPBA dimer. These hydrogels show degradation in solutions of l-glutathione and d-glucose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Women who were themselves small-for-gestational age (SGA) are at a greater risk of adulthood diseases such as non-insulin-dependent diabetes mellitus (NIDDM), and twice at risk of having an SGA baby themselves. The aim of this study was to examine the intergenerational pig. Low (L) and normal (N) birth weight female piglets were followed throughout their first pregnancy (generation 1 (0)). After they had given birth, the growth and development of the lightest (I) and heaviest (n) female piglet from each litter were monitored until approximately 5 months of age (generation 2 (G2)). A glucose tolerance test (GTT) was conducted on G1 pig at similar to 6 months of age and again during late pregnancy; a GTT was also conducted on G2 pigs at similar to 4 months of age. G1 L offspring exhibited impaired glucose metabolism in later life compared to their G1 N sibling but in the next generation a similar scenario was only observed between I and n offspring born to G1 L mothers. Despite G1 L mothers showing greater glucose intolerance in late pregnancy and a decreased litter size, average piglet birth weight was reduced and there was also a large variation in litter weight; this suggests that they were, to some extent, prioritising their nutrient intake towards themselves rather than promoting their reproductive performance. There were numerous relationships between body shape at birth and glucose curve characteristics in later life, which can, to some extent, be used to predict neonatal outcome. In conclusion, intergenerational effects are partly seen in the pig. It is likely that some of the intergenerational influences may be masked due to the pig being a litter-bearing species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical determination of redox active dye species is demonstrated in indigo samples contaminated with high levels of organic and inorganic impurities. The use of a hydrodynamic electrode system based on a vibrating probe (250 Hz, 200 mu m lateral amplitude) allows time-independent diffusion controlled signals to be enhanced and reliable concentration data to be obtained under steady state conditions at relatively fast scan rates up to 4 V s-1In this work the indigo content of a complex plant-derived indigo sample (dye content typically 30%) is determined after indigo is reduced by addition of glucose in aqueous 0.2 M NaOH. The soluble leuco-indigo is measured by its oxidation response at a vibrating electrode. The vibrating electrode, which consisted of a laterally vibrating 500 mu m diameter gold disc, is calibrated with Fe(CN)(6) 3-/4- in 0.1 M KCl and employed for indigo determination at 55, 65, and 75 C in 0.2 M NaOH. Determinations of the indigo content of 25 different samples of plant-derived indigo are compared with those obtained by conventional spectrophotometry. This comparison suggests a significant improvement by the electrochemical method, which appears to be less sensitive to impurities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of indigo (dispersed in water) to leuco-indigo (dissolved in water) is an important industrial process and investigated here for the case of glucose as an environmentally benign reducing agent. In order to quantitatively follow the formation of leuco-indigo two approaches based on (i) rotating disk voltammetry and (ii) sonovoltammetry are developed. Leuco-indigo, once formed in alkaline solution, is readily monitored at a glassy carbon electrode in the mass transport limit employing hydrodynamic voltammetry. The presence of power ultrasound further improves the leuco-indigo determination due to additional agitation and homogenization effects. While inactive at room temperature, glucose readily reduces indigo in alkaline media at 65 degrees C. In the presence of excess glucose, a surface dissolution kinetics limited process is proposed following the rate law d eta(leuco-indigo)/dt = k x c(OH-) x S-indigo where eta(leuco-indigo) is the amount of leuco-indigo formed, k = 4.1 x 10(-9) m s(-1) (at 65 degrees C, assuming spherical particles of I gm diameter) is the heterogeneous dissolution rate constant,c(OH-) is the concentration of hydroxide, and Sindigo is the reactive surface area. The activation energy for this process in aqueous 0.2 M NaOH is E-A = 64 U mol(-1) consistent with a considerable temperature effects. The redox mediator 1,8-dihydroxyanthraquinone is shown to significantly enhance the reaction rate by catalysing the electron transfer between glucose and solid indigo particles. (c) 2006 Elsevier Ltd. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbohydrate-derived substrate 3-C-allyl-1,2: 5,6-di-O-isopropylidene-alpha-D-allofuranose was judiciously manipulated for preparing suitable synthons, which could be converted to a variety of isoxazolidino-spirocycles and -tricycles through the application of ring-closing metathesis (RCM) and intramolecular nitrone cycloaddition (INC) reactions. Cleavage of the isoxazolidine rings of some of these derivatives by tranfer hydrogenolysis followed by coupling of the generated amino functionalities with 5-amino-4,6-dichloropyrimidine furnished the corresponding chloropyrimidine nucleosides, which were elaborated to spiroannulated carbanucleosides and conformationally locked bicyclo[2.2.1] heptane/ oxa-bicyclo[3.2.1]octane nucleosides. However, use of higher temperature for the cyclization of one of the chloropyrimidines led to the dimethylaminopurine analogue as a sole product, formed via nucleophilic displacement of the chloro group by dimethylamine generated from DMF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbohydrate-derived substrates having (i) C-5 nitrone and C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and (iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic isoxazolidinooxepane/-pyrart ring systems upon intramolecular nitrone cycloaddition reactions. Deprotection of the 1,2acetonides of these derivatives followed by introduction of uracil base via Vorbruggen reaction condition and cleavage of the isooxazolidine rings as well as of benzyl groups by transfer hydrogenolysis yielded an oxepane ring containing blicyclic and spirocyclic nucleosides. The corresponding oxepane based nucleoside analogues were prepared by cleavage of isoxazolidine and furanose rings, coupling of the generated amino functiontalities with 5-amino-4,6-dichloropyrimidine, cyclization to purine rings, and finally aminolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphe nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.