46 resultados para GIANT ENHANCEMENT
em CentAUR: Central Archive University of Reading - UK
Resumo:
A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability. In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.
Resumo:
On 17 August 2007, the center of Hurricane Dean passed within 92 km of the mountainous island of Dominica in the West Indies. Despite its distance from the island and its category 1–2 state, Dean brought significant total precipitation exceeding 500 mm and caused numerous landslides. Four rain gauges, a Moderate Resolution Imaging Spectroradiometer (MODIS) image, and 5-min radar scans from Guadeloupe and Martinique are used to determine the storm’s structure and the mountains’ effect on precipitation. The encounter is best described in three phases: (i) an east-northeast dry flow with three isolated drifting cells; (ii) a brief passage of the narrow outer rainband; and (iii) an extended period with south-southeast airflow in a nearly stationary spiral rainband. In this final phase, from 1100 to 2400 UTC, heavy rainfall from the stationary rainband was doubled by orographic enhancement. This enhancement pushed the sloping soils past the landslide threshold. The enhancement was caused by a modified seeder–feeder accretion mechanism that created a “dipole” pattern of precipitation, including a dry zone over the ocean in the lee. In contrast to normal trade-wind conditions, no terrain triggering of convection was identified in the hurricane environment.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
Resumo:
Since the middle of the last century agricultural intensification within Europe has led to a drastic decline in the extent of botanically diverse grasslands. Whilst measures to enhance the diversity of agriculturally-improved grasslands are in place, success has often been limited. One of the primary factors limiting success is the paucity of sources of propagules of desirable species in the surrounding landscape. The restoration of two contrasting grassland types lowland hay meadow and chalk grassland) was examined using a replicated block experiment to assess the effectiveness of two methods of seed application (hay strewing and brush harvesting) and two methods of pre-treatment disturbance (power harrowing and turf stripping). The resulting changes in botanical composition were monitored for 4 years. Seed addition by both methods resulted in significant temporal trends in plant species composition and increases in plant species richness, which were further enhanced by disturbance. Power harrowing increased the effectiveness of the seed addition treatments at the lowland hay meadow site. At the chalk grassland site a more severe disturbance created by turf stripping was used and shown to be preferable. Whilst both hay strewing and brush harvesting increased plant species richness, hay strewing was more effective at creating a sward similar to that of the donor site. Soil disturbance and seed application rate at the recipient site and timing of the hay cut at the donor site are all factors to be considered prior to the commencement of restoration management. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
With the aim of reducing the degree of saturation and increasing the C18:1 cis fatty acid content of milk fat, the effects of feeding high levels of whole cracked rapeseed to dairy cows was investigated together with the effect of increasing dietary intake of vitamin E on the vitamin E content of milk. Using a 3 x 3 factorial design, 90 Holstein dairy cows were fed one of three levels of whole cracked rapeseed (0 (ZR), 134 (MR) and 270 g . kg(-1) diet dry matter (DM) (HR)) in combination with one of three intakes of supplementary vitamin E (0 (ZE), 2 (ME) and 4 g . cow(-1) . d(-1) (HE)). Supplementing with up to almost 2 kg . d(-1) of rapeseed oil (diet HR) significantly (P < 0.001) increased C18: 1cis in milk fat, from 181 (ZR) to over 400 g &BULL; kg(-1) (HR) of total milk fatty acids. Concentrations of C18: 0, C18: 2 and C18: 3 fatty acids were also increased ( P < 0.001) but by a much lesser degree, and the saturated fatty acids C4: 0 to C16: 0 decreased substantially. Vitamin E supplementation increased ( P < 0.01) milk vitamin E concentrations from 1.29 (ZE) to 1.68 mg &BULL; kg(-1) whole milk (HE). Thus substantial changes in milk fat composition with potentially beneficial effects on human health were achieved and without any adverse effects on milk taste. However, these improvements must be offset against the substantial reductions ( P < 0.001) observed in voluntary feed DM consumption (ZR, 20.6; HR, 15.2 kg DM . d(-1)), milk yield (ZR, 22.9; HR, 13.2 kg . d(-1)) and milk fat concentration (ZR, 42.1; HR, 33.4 g . kg(-1)) which would not be commercially sustainable unless a considerable premium was paid for this modified milk. It seems likely that the optimum dose of dietary rapeseed is lower than used in this study.
Resumo:
Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.
Resumo:
A range of funding schemes and policy instruments exist to effect enhancement of the landscapes and habitats of the UK. While a number of assessments of these mechanisms have been conducted, little research has been undertaken to compare both quantitatively and qualitatively their relative effectiveness across a range of criteria. It is argued that few tools are available for such a multi-faceted evaluation of effectiveness. A form of Multiple Criteria Decision Analysis (MCDA) is justified and utilized as a framework in which to evaluate the effectiveness of nine mechanisms in relation to the protection of existing areas of chalk grassland and the creation of new areas in the South Downs of England. These include established schemes, such as the Countryside Stewardship and Environmentally Sensitive Area Schemes, along with other less common mechanisms, for example, land purchase and tender schemes. The steps involved in applying an MCDA to evaluate such mechanisms are identified and the process is described. Quantitative results from the comparison of the effectiveness of different mechanisms are presented, although the broader aim of the paper is that of demonstrating the performance of MCDA as a tool for measuring the effectiveness of mechanisms aimed at landscape and habitat enhancement.
Resumo:
Microcrystalline cellulose (MCC) and cross-linked polyvinylpyrrolidone (PVP-CL) were examined as polymeric carriers to support amorphous ibuprofen (IB). Drug/cartier systems were prepared as physical mixes, and drug was loaded onto the polymers by hot mix and solvent deposition methods. The systems were examined using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and by dissolution testing. PVP-CL reduced drug crystallinity more than MCC and, surprisingly, even very simple mixing of ibuprofen with PVP-CL induced disordering of the drug. Increased ibuprofen dissolution rates were achieved with both polymers, in the order of solvent deposition > hot mixes > physical mixes. The increased dissolution rates could be attributed to a combination of faster dissolution from amorphous ibuprofen, microcrystalline drug deposition on carrier surfaces and polymer swelling. However, no clear relationship was observed between ibuprofen dissolution rates (using first order, Higuchi or Hixson-Crowell relationships) and drug crystallinity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Lightning data, collected using a Boltek Storm Tracker system installed at Chilton, UK, were used to investigate the mean response of the ionospheric sporadic-E layer to lightning strokes in a superposed epoch study. The lightning detector can discriminate between positive and negative lightning strokes and between cloud-to-ground ( CG) and inter-cloud ( IC) lightning. Superposed epoch studies carried out separately using these subsets of lightning strokes as trigger events have revealed that the dominant cause of the observed ionospheric enhancement in the Es layer is negative cloud-to-ground lightning.