17 resultados para GENE-THERAPY

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomaterials are often soft materials. There is now growing interest in designing, synthesizing and characterising soft materials that mimic the properties of biological materials such as tissue, proteins, DNA or cells. Research on biomimetic soft matter is therefore a developing theme with important emerging applications in biomedicine including tissue engineering, diagnostics, gene therapy, drug delivery and many others. There are also important basic science questions concerning the use of concepts from colloid and polymer science to understand the self-assembly of biomimetic soft materials. This issue of Soft Matter presents a selection of extremely topical articles on a diversity of biomimetic soft matter systems. I thank the contributors for this quite remarkable collection of papers, which report many fascinating discoveries and insights.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Therapygenetics, the study of genetic determinants of response to psychological therapies, is in its infancy. Here, we investigate whether single-nucleotide polymorphisms in nerve growth factor (NGF) (rs6330) and brain-derived neutrotrophic factor (BDNF) (rs6265) genes predict the response to cognitive behaviour therapy (CBT). Neurotrophic genes represent plausible candidate genes: they are implicated in synaptic plasticity, response to stress, and are widely expressed in brain areas involved in mood and cognition. Allelic variation at both loci has shown associations with anxiety-related phenotypes. A sample of 374 anxiety-disordered children with white European ancestry was recruited from clinics in Reading, UK, and in Sydney, Australia. Participants received manualised CBT treatment and DNA was collected from buccal cells using cheek swabs. Treatment response was assessed at post-treatment and follow-up time points. We report first evidence that children with one or more copies of the T allele of NGF rs6330 were significantly more likely to be free of their primary anxiety diagnosis at follow-up (OR=0.60 (0.42–0.85), P=0.005). These effects remained even when other clinically relevant covariates were accounted for (OR=0.62 (0.41–0.92), P=0.019). No significant associations were observed between BDNF rs6265 and response to psychological therapy. These findings demonstrate that knowledge of genetic markers has the potential to inform clinical treatment decisions for psychotherapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although pharmacogenetic research thrives,1 genetic determinants of response to purely psychotherapeutic treatments remain unexplored. In a sample of children undergoing cognitive behaviour therapy (CBT) for an anxiety disorder, we tested whether treatment response is associated with the serotonin transporter gene promoter region (5HTTLPR), previously shown to moderate environmental influences on depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The administration of antisense oligonucleotides (AOs) to skip one or more exons in mutated forms of the DMD gene and so restore the reading frame of the transcript is one of the most promising approaches to treat Duchenne muscular dystrophy (DMD). At present, preclinical studies demonstrating the efficacy and safety of long-term AO administration have not been conducted. Furthermore, it is essential to determine the minimal effective dose and frequency of administration. In this study, two different low doses (LDs) of phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 in the mdx dystrophic mouse were administered for up to 12 months. Mice treated for 50 weeks showed a substantial dose-related amelioration of the pathology, particularly in the diaphragm. Moreover, the generalized physical activity was profoundly enhanced compared to untreated mdx mice showing that widespread, albeit partial, dystrophin expression restores the normal activity in mdx mice. Our results show for the first time that a chronic long-term administration of LDs of unmodified PMO, equivalent to doses in use in DMD boys, is safe, significantly ameliorates the muscular dystrophic phenotype and improves the activity of dystrophin-deficient mice, thus encouraging the further clinical translation of this approach in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Within a therapeutic gene by environment (GxE) framework, we recently demonstrated that variation in the Serotonin Transporter Promoter Polymorphism; 5HTTLPR and marker rs6330 in Nerve Growth Factor gene; NGF is associated with poorer outcomes following cognitive behaviour therapy (CBT) for child anxiety disorders. The aim of this study was to explore one potential means of extending the translational reach of G×E data in a way that may be clinically informative. We describe a ‘risk-index’ approach combining genetic, demographic and clinical data and test its ability to predict diagnostic outcome following CBT in anxious children. Method. DNA and clinical data were collected from 384 children with a primary anxiety disorder undergoing CBT. We tested our risk model in five cross-validation training sets. Results. In predicting treatment outcome, six variables had a minimum mean beta value of 0.5: 5HTTLPR, NGF rs6330, gender, primary anxiety severity, comorbid mood disorder and comorbid externalising disorder. A risk index (range 0-8) constructed from these variables had moderate predictive ability (AUC = .62-.69) in this study. Children scoring high on this index (5-8) were approximately three times as likely to retain their primary anxiety disorder at follow-up as compared to those children scoring 2 or less. Conclusion. Significant genetic, demographic and clinical predictors of outcome following CBT for anxiety-disordered children were identified. Combining these predictors within a risk-index could be used to identify which children are less likely to be diagnosis free following CBT alone or thus require longer or enhanced treatment. The ‘risk-index’ approach represents one means of harnessing the translational potential of G×E data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adenoassociated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (ΔAB/R3-R18/ΔCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (ΔAB/R3-R18/ΔCT and ΔR4-R23/ΔCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of ΔAB/R3-R18/ΔCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized ΔAB/ R3-R18/ΔCT. However, codon-optimized microdystrophin ΔR4-R23/ΔCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.